[go: up one dir, main page]

Csanyi et al., 2007 - Google Patents

Improvement of lidar data accuracy using lidar-specific ground targets

Csanyi et al., 2007

View PDF
Document ID
2536899206783942694
Author
Csanyi N
Toth C
Publication year
Publication venue
Photogrammetric Engineering & Remote Sensing

External Links

Snippet

With recent advances of lidar technology, the accuracy potential of lidar data has significantly improved. State-ofthe-art lidar systems can achieve 2 to 3 cm ranging accuracy under ideal conditions, which is the accuracy level required by engineering scale mapping …
Continue reading at www.ingentaconnect.com (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/24Measuring arrangements characterised by the use of optical means for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. correcting range migration errors
    • G01S13/9035Particular SAR processing techniques not provided for elsewhere, e.g. squint mode, doppler beam-sharpening mode, spotlight mode, bistatic SAR, inverse SAR
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/94Radar or analogous systems specially adapted for specific applications for terrain-avoidance
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints

Similar Documents

Publication Publication Date Title
Csanyi et al. Improvement of lidar data accuracy using lidar-specific ground targets
Elkhrachy Accuracy assessment of low-cost unmanned aerial vehicle (UAV) photogrammetry
Kraus et al. Advanced DTM generation from LIDAR data
Filin Recovery of systematic biases in laser altimetry data using natural surfaces
Habib et al. Photogrammetric and LiDAR data registration using linear features
Piermattei et al. Use of terrestrial photogrammetry based on structure‐from‐motion for mass balance estimation of a small glacier in the Italian alps
Barbarella et al. Monitoring of large landslides by Terrestrial Laser Scanning techniques: field data collection and processing
EP2356584B1 (en) Method of generating a geodetic reference database product
Rumpler et al. Automated end-to-end workflow for precise and geo-accurate reconstructions using fiducial markers
Vosselman Analysis of planimetric accuracy of airborne laser scanning surveys
McIntosh et al. Integration of laser-derived DSMs and matched image edges for generating an accurate surface model
Habib et al. Integration of LIDAR and photogrammetry for close range applications
Wu et al. Feature-constrained registration of building point clouds acquired by terrestrial and airborne laser scanners
Pfeifer et al. Automatic tie elements detection for laser scanner strip adjustment
Habib et al. LiDAR strip adjustment using conjugate linear features in overlapping strips
Toth Strip adjustment and registration
Postolov et al. Registration of airborne laser data to surfaces generated by photogrammetric means
Mills et al. Synergistic fusion of GPS and photogrammetrically generated elevation models
Deliry et al. Accuracy evaluation of UAS photogrammetry and structure from motion in 3D modeling and volumetric calculations
Kumari et al. Adjustment of systematic errors in ALS data through surface matching
Toth et al. Using road pavement markings as ground control for LiDAR data
Previtali et al. Accurate 3D surface measurement of mountain slopes through a fully automated image-based technique
Gräfe High precision kinematic surveying with laser scanners
Ostrowski et al. Analysis of point cloud generation from UAS images
Habib et al. Integration of laser and photogrammetric data for calibration purposes