[go: up one dir, main page]

Hayashi et al., 2021 - Google Patents

Cluster-based zero-shot learning for multivariate data

Hayashi et al., 2021

View PDF
Document ID
235332484675876031
Author
Hayashi T
Fujita H
Publication year
Publication venue
Journal of ambient intelligence and humanized computing

External Links

Snippet

Supervised learning requires a sufficient training dataset which includes all labels. However, there are cases that some class is not in the training data. Zero-shot learning (ZSL) is the task of predicting class that is not in the training data (unseen class). The existing ZSL …
Continue reading at arxiv.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F17/30705Clustering or classification
    • G06F17/3071Clustering or classification including class or cluster creation or modification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30861Retrieval from the Internet, e.g. browsers
    • G06F17/30864Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems
    • G06F17/30867Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems with filtering and personalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30587Details of specialised database models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management

Similar Documents

Publication Publication Date Title
Hayashi et al. Cluster-based zero-shot learning for multivariate data
Imani et al. Fach: Fpga-based acceleration of hyperdimensional computing by reducing computational complexity
Shi et al. High performance genetic algorithm based text clustering using parts of speech and outlier elimination
Li et al. An ensemble clustering framework based on hierarchical clustering ensemble selection and clusters clustering
Aziguli et al. A robust text classifier based on denoising deep neural network in the analysis of big data
Kanzawa On possibilistic clustering methods based on Shannon/Tsallis-entropy for spherical data and categorical multivariate data
Gabryel The bag-of-features algorithm for practical applications using the MySQL database
Dehuri et al. A hybrid genetic based functional link artificial neural network with a statistical comparison of classifiers over multiple datasets
Bhagat et al. A study on zero-shot learning from semantic viewpoint
Xiaohui An adaptive genetic algorithm-based background elimination model for English text
Malik et al. Fractional cross entropy-based loss function for classification of IoT services with semantic graph based on IFTTT recipes
Li Modeling winner-take-all competition in sparse binary projections
Fan et al. Online data clustering using variational learning of a hierarchical dirichlet process mixture of dirichlet distributions
Sabouri et al. Comparative study of supervised regression algorithms in machine learning
Zouinina et al. A two-levels data anonymization approach
Dai et al. Graph sparse nonnegative matrix factorization algorithm based on the inertial projection neural network
Showkatramani et al. User Interface for Managing and Refining Related Patent Terms
Fan et al. Model-based clustering based on variational learning of hierarchical infinite beta-liouville mixture models
Margiotta et al. Taxosbert: Unsupervised taxonomy expansion through expressive semantic similarity
Di Ciaccio Optimal coding of high-cardinality categorical data in machine learning
Meng et al. Clustering and its extensions in the social media domain
Maanicshah et al. Unsupervised variational learning of finite generalized inverted dirichlet mixture models with feature selection and component splitting
Anita Priscilla Mary et al. A Comparative Study and Analysis of Classification Methodologies in Data Mining for Energy Resources
Khan et al. Graph Clustering Based Size Varying Rules for Lifelong Topic Modeling
Parveen et al. An efficient detection and classification of sarcastic by using CNN model