[go: up one dir, main page]

Masoumi et al., 2017 - Google Patents

E-core hybrid reluctance motor with permanent magnets inside stator common poles

Masoumi et al., 2017

View PDF
Document ID
2072279660564000853
Author
Masoumi M
Mirsalim M
Publication year
Publication venue
IEEE Transactions on Energy Conversion

External Links

Snippet

In this paper, a new E-core hybrid reluctance motor (HRM) is proposed with permanent magnets (PMs), placed inside stator common poles. This motor is a 2-phase 12/16 HRM, which is characterized by a stator composed of four E-cores and a rotor with the same …
Continue reading at drive.google.com (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotor
    • H02K1/272Inner rotor where the magnetisation axis of the magnets is radial or tangential
    • H02K1/274Inner rotor where the magnetisation axis of the magnets is radial or tangential consisting of a plurality of circumferentially positioned magnets
    • H02K1/2753Inner rotor where the magnetisation axis of the magnets is radial or tangential consisting of a plurality of circumferentially positioned magnets consisting of magnets or groups of magnets arranged with alternating polarity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/08Salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/04Synchronous motors for single-phase current
    • H02K19/06Motors having windings on the stator and a variable-reluctance soft-iron rotor without windings, e.g. inductor motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system

Similar Documents

Publication Publication Date Title
Masoumi et al. E-core hybrid reluctance motor with permanent magnets inside stator common poles
Farahani et al. An innovative hybrid-excited multi-tooth switched reluctance motor for torque enhancement
Almoraya et al. Development of a double-sided consequent pole linear vernier hybrid permanent-magnet machine for wave energy converters
Kondelaji et al. Performance analysis of a new switched reluctance motor with two sets of embedded permanent magnets
Mecrow et al. Preliminary performance evaluation of switched reluctance motors with segmental rotors
Husain et al. Design considerations of a transverse flux machine for direct-drive wind turbine applications
Eskandari et al. An improved 9/12 two-phase E-core switched reluctance machine
Ding et al. Characteristics assessment and comparative study of a segmented-stator permanent-magnet hybrid-excitation SRM drive with high-torque capability
US7205694B2 (en) Control of a switched reluctance drive
Nezamabadi et al. Design, dynamic electromagnetic analysis, FEM, and fabrication of a new switched-reluctance motor with hybrid motion
Hasegawa et al. A novel switched reluctance motor with the auxiliary windings and permanent magnets
Ueda et al. Cogging-torque reduction of transverse-flux motor by skewing stator poles
Farahani et al. A comprehensive analysis of an axial flux switched reluctance motor with different number of rotor poles
US20150002063A1 (en) Double saliency exterior rotor switched reluctance machine
WO2020264402A1 (en) Induction machines without permanent magnets
Yu et al. Design and analysis of a magnetless double-rotor flux switching motor for low cost application
Chirca et al. Analysis of innovative design variations for double-sided coreless-stator axial-flux permanent-magnet generators in micro-wind power applications
Zhou et al. Reduction of cogging force in a linear flux-switching permanent-magnet brushless AC machine for direct-drive applications
Guo et al. Key parameter design and analysis of flux reversal linear rotary permanent magnet actuator
Farahani et al. Divided teeth switched reluctance motor with different tooth combinations
Amirkhani et al. A comprehensive analysis of a complementary-rotor doubly salient permanent magnet motor for high torque applications
Zhao et al. Optimization design of outer-rotor permanent magnet synchronous motor
Abdollahi et al. Novel e-core double-stator two phase switched reluctance motor with segmental rotor
Ghaffarpour et al. Analysis of an e-core permanent magnet switched reluctance motor
Wiltuschnig et al. Design and analysis of a novel axial variable-flux reluctance machine with dc-excited field and modular double rotor