Zhou et al., 2011 - Google Patents
Nitrile‐Substituted QA Derivatives: New Acceptor Materials for Solution‐Processable Organic Bulk Heterojunction Solar CellsZhou et al., 2011
- Document ID
- 1907057394636564456
- Author
- Zhou T
- Jia T
- Kang B
- Li F
- Fahlman M
- Wang Y
- Publication year
- Publication venue
- Advanced Energy Materials
External Links
Snippet
The development of non‐fullerene‐based electron acceptors (especially organic molecules with sufficient absorption property within the solar spectrum region) for bulk‐heterojunction (BHJ) organic solar cells (OSCs) is an important issue for the achievement of high …
- 239000000463 material 0 title abstract description 28
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/549—Material technologies organic PV cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0062—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
- H01L51/0071—Polycyclic condensed heteroaromatic hydrocarbons
- H01L51/0072—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0052—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0035—Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0045—Carbon containing materials, e.g. carbon nanotubes, fullerenes
- H01L51/0046—Fullerenes, e.g. C60, C70
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0077—Coordination compounds, e.g. porphyrin
- H01L51/0079—Metal complexes comprising a IIIB-metal (B, Al, Ga, In or TI), e.g. Tris (8-hydroxyquinoline) gallium (Gaq3)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/05—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
- H01L51/0504—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
- H01L51/0508—Field-effect devices, e.g. TFTs
- H01L51/0512—Field-effect devices, e.g. TFTs insulated gate field effect transistors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/42—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture
- H01L51/4253—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture comprising bulk hetero-junctions, e.g. interpenetrating networks
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Zhou et al. | Nitrile‐Substituted QA Derivatives: New Acceptor Materials for Solution‐Processable Organic Bulk Heterojunction Solar Cells | |
| Liu et al. | Spin‐coated small molecules for high performance solar cells | |
| Yang et al. | Functionalized methanofullerenes used as n-type materials in bulk-heterojunction polymer solar cells and in field-effect transistors | |
| Xie et al. | A novel thiophene‐fused ending group enabling an excellent small molecule acceptor for high‐performance fullerene‐free polymer solar cells with 11.8% efficiency | |
| Li et al. | Narrow‐Bandgap Single‐Component Polymer Solar Cells with Approaching 9% Efficiency | |
| Li | Fullerene‐bisadduct acceptors for polymer solar cells | |
| He et al. | High‐yield synthesis and electrochemical and photovoltaic properties of indene‐C70 bisadduct | |
| Wang et al. | Additive‐free bulk‐heterojuction solar cells with enhanced power conversion efficiency, comprising a newly designed selenophene‐thienopyrrolodione copolymer | |
| Meng et al. | Highly Efficient and Thermally Stable Polymer Solar Cells with Dihydronaphthyl‐based [70] Fullerene Bisadduct Derivative as the Acceptor | |
| Min et al. | Alkyl Chain Engineering of Solution‐Processable Star‐Shaped Molecules for High‐Performance Organic Solar Cells | |
| Zhang et al. | Synthesis and photovoltaic properties of new low bandgap isoindigo-based conjugated polymers | |
| Schwenn et al. | A Small Molecule Non‐fullerene Electron Acceptor for Organic Solar Cells | |
| Wei et al. | Efficient, ordered bulk heterojunction nanocrystalline solar cells by annealing of ultrathin squaraine thin films | |
| Chen et al. | Vacuum-deposited small-molecule organic solar cells with high power conversion efficiencies by judicious molecular design and device optimization | |
| Zhao et al. | Effect of carbon chain length in the substituent of PCBM‐like molecules on their photovoltaic properties | |
| Chan et al. | Synthesis, characterization, and photovoltaic properties of novel semiconducting polymers with Thiophene− Phenylene− Thiophene (TPT) as coplanar units | |
| Sun et al. | High efficiency and high V oc inverted polymer solar cells based on a low-lying HOMO polycarbazole donor and a hydrophilic polycarbazole interlayer on ITO cathode | |
| Xiao et al. | Quinoxaline-containing nonfullerene small-molecule acceptors with a linear A2-A1-D-A1-A2 skeleton for poly (3-hexylthiophene)-based organic solar cells | |
| Lin et al. | Small‐Molecule Solar Cells with Fill Factors up to 0.75 via a Layer‐by‐Layer Solution Process | |
| Ma et al. | Solution processing of a small molecule, subnaphthalocyanine, for efficient organic photovoltaic cells | |
| Wong et al. | Solution processable fluorenyl hexa‐peri‐hexabenzocoronenes in organic field‐effect transistors and solar cells | |
| Yuan et al. | Improved Tandem All‐Polymer Solar Cells Performance by Using Spectrally Matched Subcells | |
| Cheng et al. | Di (4-methylphenyl) methano-C60 bis-adduct for efficient and stable organic photovoltaics with enhanced open-circuit voltage | |
| Chen et al. | Quinacridone-based molecular donors for solution processed bulk-heterojunction organic solar cells | |
| Jiang et al. | Crystalline low-band gap polymers comprising thiophene and 2, 1, 3-benzooxadiazole units for bulk heterojunction solar cells |