He et al., 2018 - Google Patents
A 2.5-W 40-MHz-bandwidth hybrid supply modulator with 91% peak efficiency, 3-V output swing, and 4-mV output ripple at 3.6-V supplyHe et al., 2018
- Document ID
- 18243240465778780630
- Author
- He H
- Kang Y
- Ge T
- Guo L
- Chang J
- Publication year
- Publication venue
- IEEE Transactions on Power Electronics
External Links
Snippet
We describe a supply modulator comprising a proposed delay-based hysteresis controller, proposed wideband class-AB amplifier, and class-D amplifier for an envelope tracking (ET) power amplifier (PA). We investigate the power dissipation and optimization method of the …
- 230000000051 modifying 0 title abstract description 112
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0216—Continuous control
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0261—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
- H03F3/2176—Class E amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
- H03F3/2173—Class D power amplifiers; Switching amplifiers of the bridge type
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/211—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0277—Selecting one or more amplifiers from a plurality of amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/451—Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/34—Negative-feedback-circuit arrangements with or without positive feedback
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/181—Low frequency amplifiers, e.g. audio preamplifiers
- H03F3/183—Low frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
- H03F3/185—Low frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only with field-effect devices
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/30—Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
- H03F3/3001—Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
- H03F3/3055—Parallelled mixed SEPP stages, e.g. a CMOS common drain and a CMOS common source in parallel or bipolar SEPP and FET SEPP in parallel
- H03F3/3059—Parallelled mixed SEPP stages, e.g. a CMOS common drain and a CMOS common source in parallel or bipolar SEPP and FET SEPP in parallel with symmetrical driving of the end stage
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/331—Sigma delta modulation being used in an amplifying circuit
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/08—Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/68—Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| He et al. | A 2.5-W 40-MHz-bandwidth hybrid supply modulator with 91% peak efficiency, 3-V output swing, and 4-mV output ripple at 3.6-V supply | |
| Hassan et al. | A combined series-parallel hybrid envelope amplifier for envelope tracking mobile terminal RF power amplifier applications | |
| Kitchen et al. | Combined Linear and $\Delta $-Modulated Switch-Mode PA Supply Modulator for Polar Transmitters | |
| Kwak et al. | A 2 W CMOS hybrid switching amplitude modulator for EDGE polar transmitters | |
| Hassan et al. | A wideband CMOS/GaAs HBT envelope tracking power amplifier for 4G LTE mobile terminal applications | |
| Su et al. | An IC for linearizing RF power amplifiers using envelope elimination and restoration | |
| Shrestha et al. | A wideband supply modulator for 20 MHz RF bandwidth polar PAs in 65 nm CMOS | |
| Wu et al. | A two-phase switching hybrid supply modulator for RF power amplifiers with 9% efficiency improvement | |
| Wang et al. | An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11 g WLAN applications | |
| Chu et al. | A 10 MHz bandwidth, 2 mV ripple PA regulator for CDMA transmitters | |
| CN105264767B (en) | Electronic equipment, the method for amplifying envelope signal, equipment and computer-readable medium | |
| CN112236938B (en) | Power modulator, power amplifier with same and corresponding control method | |
| Mahmoudidaryan et al. | Wideband hybrid envelope tracking modulator with hysteretic-controlled three-level switching converter and slew-rate enhanced linear amplifier | |
| Jing et al. | A high slew-rate adaptive biasing hybrid envelope tracking supply modulator for LTE applications | |
| Bhardwaj et al. | A review of hybrid supply modulators in CMOS technologies for envelope tracking PAs | |
| Liu et al. | A multi-loop-controlled AC-coupling supply modulator with a mode-switching CMOS PA in an EER system with envelope shaping | |
| He et al. | A 40 MHz bandwidth, 91% peak efficiency, 2.5 W output power supply modulator with dual-mode Sigma–Delta control and adaptive biasing amplifier for multistandard communications | |
| Tan et al. | An efficiency-enhanced hybrid supply modulator with single-capacitor current-integration control | |
| Lin et al. | A CMOS envelope tracking supply converter for RF power amplifiers of 5G NR mobile terminals | |
| Kim et al. | A 500-MHz bandwidth 7.5-mV pp ripple power-amplifier supply modulator for RF polar transmitters | |
| Hassan et al. | High efficiency envelope tracking power amplifier with very low quiescent power for 20 MHz LTE | |
| Zavarei et al. | Envelope-tracking common-drain CMOS power amplifier with a switching-only supply modulator for LTE applications | |
| Zhang et al. | An 80.4% peak power efficiency adaptive supply class H power amplifier for audio applications | |
| Utomo et al. | An 85.1% peak efficiency, low power class H audio amplifier with full class H operation | |
| Oh et al. | Dual-mode supply modulator IC with an adaptive quiescent current controller for its linear amplifier in LTE mobile power amplifier |