Faghihi et al., 2019 - Google Patents
Toward one-shot learning in neuroscience-inspired deep spiking neural networksFaghihi et al., 2019
View PDF- Document ID
- 181238415397809843
- Author
- Faghihi F
- Molhem H
- Moustafa A
- Publication year
- Publication venue
- BioRxiv
External Links
Snippet
Conventional deep neural networks capture essential information processing stages in perception. Deep neural networks often require very large volume of training examples, whereas children can learn concepts such as hand-written digits with few examples. The …
- 230000001537 neural 0 title abstract description 52
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
- G06N3/0635—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means using analogue means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
- G06N3/049—Temporal neural nets, e.g. delay elements, oscillating neurons, pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6256—Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6228—Selecting the most significant subset of features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6288—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
- G06K9/629—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/64—Methods or arrangements for recognition using electronic means using simultaneous comparisons or correlations of the image signals with a plurality of references, e.g. resistor matrix
- G06K9/66—Methods or arrangements for recognition using electronic means using simultaneous comparisons or correlations of the image signals with a plurality of references, e.g. resistor matrix references adjustable by an adaptive method, e.g. learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Todo et al. | Unsupervised learnable neuron model with nonlinear interaction on dendrites | |
| Shrestha et al. | Stable spike-timing dependent plasticity rule for multilayer unsupervised and supervised learning | |
| Bagheri et al. | Training probabilistic spiking neural networks with first-to-spike decoding | |
| Siddique et al. | Study and observation of the variations of accuracies for handwritten digits recognition with various hidden layers and epochs using neural network algorithm | |
| Faghihi et al. | A synaptic pruning-based spiking neural network for hand-written digits classification | |
| Rekabdar et al. | An unsupervised approach to learning and early detection of spatio-temporal patterns using spiking neural networks | |
| Cheng et al. | Finite meta-dynamic neurons in spiking neural networks for spatio-temporal learning | |
| Faghihi et al. | Toward one-shot learning in neuroscience-inspired deep spiking neural networks | |
| Dai et al. | A two-phased and Ensemble scheme integrated Backpropagation algorithm | |
| Pérez et al. | LSM static signs recognition using image processing | |
| Vakil et al. | Explainable predictions of different machine learning algorithms used to predict Early Stage diabetes | |
| Xu et al. | Improving efficiency in sparse learning with the feedforward inhibitory motif | |
| Dileep et al. | Multiple hierarchical decision on neural network to predict human age and gender | |
| Antonov et al. | Spiking neural networks training with combined Hebbian rules | |
| Rekabdar et al. | Unsupervised learning of spatio-temporal patterns using spike timing dependent plasticity | |
| Tanchotsrinon et al. | Facial expression recognition using graph-based features and artificial neural networks | |
| Zhao et al. | Bio-inspired categorization using event-driven feature extraction and spike-based learning | |
| Yu et al. | Rapid feedforward computation by temporal encoding and learning with spiking neurons | |
| Yin et al. | Reservoir computing ensembles for multi-object behavior recognition | |
| Hasan et al. | Neuro-scientific analysis of weights in neural networks | |
| Liu et al. | Brain-inspired hierarchical spiking neural network using unsupervised stdp rule for image classification | |
| Nikelshpur et al. | Using particle swarm optimization to pre-train artificial neural networks: selecting initial training weights for feed-forward back-propagation neural networks | |
| Yu et al. | Winner-take-all as basic probabilistic inference unit of neuronal circuits | |
| Swaminathan et al. | Vibe: Enhancing unsupervised continual learning with autonomous novelty detection | |
| Al-jumaili | Classification of Venomous and Non-venomous Snakes Using Machine Learning |