Nabil et al., 2013 - Google Patents
New authenticated key agreement protocolsNabil et al., 2013
View PDF- Document ID
- 18008995314002124676
- Author
- Nabil M
- Abouelseoud Y
- Elkobrosy G
- Abdelrazek A
- Publication year
- Publication venue
- Proceedings of the International MultiConference of Engineers and Computer Scientists
External Links
Snippet
(AKA) protocols are proposed to be used by two entities and three entities in order to establish a common session key between these entities. This key is used later to encrypt the data exchanged between the entities to assure confidentiality over public insecure channels …
- 230000001737 promoting 0 abstract description 2
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0838—Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these
- H04L9/0841—Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these involving Diffie-Hellman or related key agreement protocols
- H04L9/0844—Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these involving Diffie-Hellman or related key agreement protocols with user authentication or key authentication, e.g. ElGamal, MTI, MQV-Menezes-Qu-Vanstone protocol or Diffie-Hellman protocols using implicitly-certified keys
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/04—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
- H04L63/0428—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
- H04L63/0435—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload wherein the sending and receiving network entities apply symmetric encryption, i.e. same key used for encryption and decryption
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0819—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/06—Network architectures or network communication protocols for network security for supporting key management in a packet data network
- H04L63/061—Network architectures or network communication protocols for network security for supporting key management in a packet data network for key exchange, e.g. in peer-to-peer networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/04—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
- H04L63/0428—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
- H04L63/0442—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload wherein the sending and receiving network entities apply asymmetric encryption, i.e. different keys for encryption and decryption
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3236—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions
- H04L9/3242—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions involving keyed hash functions, e.g. message authentication codes [MACs], CBC-MAC or HMAC
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3271—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/08—Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network
- H04L63/0823—Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network using certificates
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Li et al. | Efficient signcryption for heterogeneous systems | |
| Mandt et al. | Certificateless authenticated two-party key agreement protocols | |
| US8180047B2 (en) | Trapdoor pairings | |
| Gupta et al. | On securing bi-and tri-partite session key agreement protocol using IBE framework | |
| Fiore et al. | Making the Diffie-Hellman protocol identity-based | |
| Al-Riyami | Cryptographic schemes based on elliptic curve pairings | |
| CN104301108B (en) | It is a kind of from identity-based environment to the label decryption method without certificate environment | |
| Wei et al. | Remove key escrow from the BF and Gentry identity-based encryption with non-interactive key generation | |
| Tseng et al. | Strongly secure ID‐based authenticated key agreement protocol for mobile multi‐server environments | |
| Tsaur | Several security schemes constructed using ECC-based self-certified public key cryptosystems | |
| Ren et al. | Provably secure aggregate signcryption scheme | |
| Li et al. | A new self-certified signature scheme based on NTRUSing for smart mobile communications | |
| Zhou et al. | Certificate-based generalized ring signcryption scheme | |
| Kim et al. | Enhanced ID-based authenticated key agreement protocols for a multiple independent PKG environment | |
| Nayak | A secure ID-based signcryption scheme based on elliptic curve cryptography | |
| Tsai et al. | SIBSC: Separable identity-based signcryption for resource-constrained devices | |
| Mokhtarnameh et al. | An enhanced certificateless authenticated key agreement protocol | |
| Nabil et al. | New authenticated key agreement protocols | |
| Wu et al. | A publicly verifiable PCAE scheme for confidential applications with proxy delegation | |
| Mandal et al. | A Computational Review of Identity-based Signcryption Schemes. | |
| Yanai et al. | A Certificateless Ordered Sequential Aggregate Signature Scheme Secure against Super Adverssaries. | |
| Nabil et al. | Certificate-based authenticated key agreement protocols | |
| Dehkordi et al. | Certificateless identification protocols from super singular elliptic curve | |
| Hölbl et al. | Comparative study of tripartite identity-based authenticated key agreement protocols | |
| Han et al. | Deniable authentication protocol resisting man-in-the-middle attack |