Yang et al., 2020 - Google Patents
Hierarchical soft quantization for skeleton-based human action recognitionYang et al., 2020
- Document ID
- 17795119735157868908
- Author
- Yang J
- Liu W
- Yuan J
- Mei T
- Publication year
- Publication venue
- IEEE Transactions on Multimedia
External Links
Snippet
In daily life, human beings rely on hands and body parts to complete particular actions cooperatively. These selected body parts and their cooperative relationships are essential cues to distinguish these actions. However, most existing action recognition methods, which …
- 210000002356 Skeleton 0 title abstract description 79
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4604—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30781—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F17/30784—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
- G06F17/30799—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre using low-level visual features of the video content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30244—Information retrieval; Database structures therefor; File system structures therefor in image databases
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00335—Recognising movements or behaviour, e.g. recognition of gestures, dynamic facial expressions; Lip-reading
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Yang et al. | Hierarchical soft quantization for skeleton-based human action recognition | |
| Cho et al. | Self-attention network for skeleton-based human action recognition | |
| Zhang et al. | RGB-T salient object detection via fusing multi-level CNN features | |
| Zhuge et al. | Salient object detection via integrity learning | |
| Liu et al. | Part-object relational visual saliency | |
| Peng et al. | Learning rich features for gait recognition by integrating skeletons and silhouettes | |
| Wu et al. | 3-D PersonVLAD: Learning deep global representations for video-based person reidentification | |
| Xu et al. | Aligning correlation information for domain adaptation in action recognition | |
| Li et al. | Deep facial expression recognition: A survey | |
| Zhang et al. | Graph edge convolutional neural networks for skeleton-based action recognition | |
| Song et al. | Recognizing spontaneous micro-expression using a three-stream convolutional neural network | |
| Zhang et al. | Fusing geometric features for skeleton-based action recognition using multilayer LSTM networks | |
| Xu et al. | Prototypical contrast and reverse prediction: Unsupervised skeleton based action recognition | |
| Abdelbaky et al. | Two-stream spatiotemporal feature fusion for human action recognition | |
| Dong et al. | Style aggregated network for facial landmark detection | |
| Wang et al. | Survey on person re‐identification based on deep learning | |
| Wang et al. | Multi-stream interaction networks for human action recognition | |
| Ji et al. | Arbitrary-view human action recognition: A varying-view RGB-D action dataset | |
| Huang et al. | Joint cross-modal and unimodal features for RGB-D salient object detection | |
| Ji et al. | A large-scale varying-view rgb-d action dataset for arbitrary-view human action recognition | |
| Li et al. | Image co-saliency detection and instance co-segmentation using attention graph clustering based graph convolutional network | |
| Singh et al. | Progress of human action recognition research in the last ten years: A comprehensive survey | |
| Yao et al. | Collaborative feature learning for gait recognition under cloth changes | |
| Wang et al. | MGR 3 Net: multigranularity region relation representation network for facial expression recognition in affective robots | |
| Wu et al. | Video-Based Martial Arts Combat Action Recognition and Position Detection Using Deep Learning |