[go: up one dir, main page]

Nicholls et al., 2014 - Google Patents

Measuring caspase activity in vivo

Nicholls et al., 2014

Document ID
17585071993626841681
Author
Nicholls S
Hyman B
Publication year
Publication venue
Methods in enzymology

External Links

Snippet

Caspases are a family of integral proteases playing a role in apoptosis. The importance of apoptosis in disease has made these proteases not only an attractive drug target but also a focal point for measuring apoptosis in vivo. The critical role caspases play in determining …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay
    • G01N33/536Immunoassay; Biospecific binding assay with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES OR MICRO-ORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the means of detection
    • C12Q1/6818Hybridisation assays characterised by the means of detection involving interaction of at least two labels, e.g. resonant energy transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES OR MICRO-ORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6897Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/978Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)

Similar Documents

Publication Publication Date Title
JP7676487B2 (en) Recognition of cellular target binding by bioactive agents using intracellular bioluminescence resonance energy transfer
Ozawa et al. Advances in fluorescence and bioluminescence imaging
Villalobos et al. Current state of imaging protein-protein interactions in vivo with genetically encoded reporters
den Hamer et al. Bright bioluminescent BRET sensor proteins for measuring intracellular caspase activity
Tan et al. Fluoromodules consisting of a promiscuous RNA aptamer and red or blue fluorogenic cyanine dyes: selection, characterization, and bioimaging
Xia et al. Biosensing and imaging based on bioluminescence resonance energy transfer
Neefjes et al. Fluorescent probes for proteolysis: tools for drug discovery
Chernov et al. Near-infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes
Kanno et al. Cyclic luciferase for real‐time sensing of caspase‐3 activities in living mammals
Zhu et al. Fluorescence imaging of drug target proteins using chemical probes
Telmer et al. Rapid, specific, no-wash, far-red fluorogen activation in subcellular compartments by targeted fluorogen activating proteins
Shekhawat et al. Split-protein systems: beyond binary protein–protein interactions
Jiang et al. Recent developments of biological reporter technology for detecting gene expression
Takakura et al. New class of bioluminogenic probe based on bioluminescent enzyme-induced electron transfer: BioLeT
Shimozono et al. Engineering FRET constructs using CFP and YFP
Stawarski et al. Genetically encoded FRET-based biosensor for imaging MMP-9 activity
Gallo Fluorogen-activating proteins: next-generation fluorescence probes for biological research
Ali et al. Cell‐surface sensors: lighting the cellular environment
Saito et al. Recent progress in luminescent proteins development
Wiens et al. Surveying the landscape of optogenetic methods for detection of protein–protein interactions
Nicholls et al. Measuring caspase activity in vivo
Huang et al. Design of “smart” probes for optical imaging of apoptosis
Rathbun et al. Rapid multicomponent bioluminescence imaging via substrate unmixing
Li et al. A reaction-based ratiometric bioluminescent platform for point-of-care and quantitative detection using a smartphone
Sarkar et al. Finding the partner: FRET and beyond