Nguyen et al., 2022 - Google Patents
A low-power, high-accuracy with fully on-chip ternary weight hardware architecture for Deep Spiking Neural NetworksNguyen et al., 2022
View PDF- Document ID
- 17390300263254682913
- Author
- Nguyen D
- Tran X
- Dang K
- Iacopi F
- Publication year
- Publication venue
- Microprocessors and Microsystems
External Links
Snippet
Abstract Recently, Deep Spiking Neural Network (DSNN) has emerged as a promising neuromorphic approach for various AI-based applications, such as image classification, speech recognition, robotic control etc. on edge computing platforms. However, the state-of …
- 230000001537 neural 0 title abstract description 78
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
- G06N3/0635—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means using analogue means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
- G06N3/0472—Architectures, e.g. interconnection topology using probabilistic elements, e.g. p-rams, stochastic processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
- G06N3/049—Temporal neural nets, e.g. delay elements, oscillating neurons, pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
- G06N3/084—Back-propagation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
- G06K9/627—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches based on distances between the pattern to be recognised and training or reference patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6251—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on a criterion of topology preservation, e.g. multidimensional scaling, self-organising maps
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/12—Computer systems based on biological models using genetic models
- G06N3/126—Genetic algorithms, i.e. information processing using digital simulations of the genetic system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6296—Graphical models, e.g. Bayesian networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/02—Computer systems based on specific mathematical models using fuzzy logic
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Dong et al. | A neural network boosting regression model based on XGBoost | |
| Fernandes Jr et al. | Pruning deep convolutional neural networks architectures with evolution strategy | |
| EP3543917B1 (en) | Dynamic adaptation of deep neural networks | |
| US11429862B2 (en) | Dynamic adaptation of deep neural networks | |
| Alemdar et al. | Ternary neural networks for resource-efficient AI applications | |
| Sarwar et al. | Multiplier-less artificial neurons exploiting error resiliency for energy-efficient neural computing | |
| Chen et al. | Neuromorphic computing's yesterday, today, and tomorrow–an evolutional view | |
| Nguyen et al. | A low-power, high-accuracy with fully on-chip ternary weight hardware architecture for Deep Spiking Neural Networks | |
| Ankit et al. | TraNNsformer: Neural network transformation for memristive crossbar based neuromorphic system design | |
| CN105488563A (en) | Sparse adaptive neural network, algorithm and implementation device for deep learning | |
| Guo et al. | Pruning and quantization algorithm with applications in memristor-based convolutional neural network | |
| Chatzikonstantinou et al. | Recurrent neural network pruning using dynamical systems and iterative fine-tuning | |
| Tang et al. | Rank order coding based spiking convolutional neural network architecture with energy-efficient membrane voltage updates | |
| Kulkarni et al. | AI model compression for edge devices using optimization techniques | |
| Wu et al. | Dynamic threshold integrate and fire neuron model for low latency spiking neural networks | |
| Alabbasy et al. | Compressing medical deep neural network models for edge devices using knowledge distillation | |
| Tareen et al. | Convolutional neural networks for beginners | |
| Li et al. | Directly training temporal Spiking Neural Network with sparse surrogate gradient | |
| Kalyanam et al. | Range based hardware optimization of multilayer perceptrons with relus | |
| Chatterjee et al. | Towards optimal quantization of neural networks | |
| Luu et al. | Clinical name entity recognition based on recurrent neural networks | |
| CN119360112B (en) | Uniform alignment of pre-trained multimodal model features based on meta-learning | |
| Truong | A Low-cost Artificial Neural Network Model for Raspberry Pi. | |
| Choi et al. | Early termination based training acceleration for an energy-efficient SNN processor design | |
| CN117043787A (en) | Kernel guided architecture search and knowledge distillation |