[go: up one dir, main page]

Lee et al., 2017 - Google Patents

Gp-ilqg: Data-driven robust optimal control for uncertain nonlinear dynamical systems

Lee et al., 2017

View PDF
Document ID
16718317521497573031
Author
Lee G
Srinivasa S
Mason M
Publication year
Publication venue
arXiv preprint arXiv:1705.05344

External Links

Snippet

As we aim to control complex systems, use of a simulator in model-based reinforcement learning is becoming more common. However, it has been challenging to overcome the Reality Gap, which comes from nonlinear model bias and susceptibility to disturbance. To …
Continue reading at arxiv.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis

Similar Documents

Publication Publication Date Title
Lee et al. Gp-ilqg: Data-driven robust optimal control for uncertain nonlinear dynamical systems
Fan et al. Deep learning tubes for tube MPC
Lew et al. Safe active dynamics learning and control: A sequential exploration–exploitation framework
Mukadam et al. Gaussian process motion planning
Polydoros et al. Survey of model-based reinforcement learning: Applications on robotics
Fan et al. A learning framework for high precision industrial assembly
Van Den Berg et al. Motion planning under uncertainty using iterative local optimization in belief space
Boedecker et al. Approximate real-time optimal control based on sparse gaussian process models
Venkatraman et al. Improved learning of dynamics models for control
US20180032868A1 (en) Early prediction of an intention of a user's actions
Wiedemann et al. Multi-agent exploration of spatial dynamical processes under sparsity constraints
Wiedemann et al. Probabilistic modeling of gas diffusion with partial differential equations for multi-robot exploration and gas source localization
Vinogradska et al. Numerical quadrature for probabilistic policy search
Akhare et al. Diffhybrid-uq: uncertainty quantification for differentiable hybrid neural modeling
Jin et al. Inverse optimal control with incomplete observations
Snyder et al. Online learning for obstacle avoidance
Menda et al. Scalable identification of partially observed systems with certainty-equivalent EM
Teng et al. Riemannian direct trajectory optimization of rigid bodies on matrix lie groups
Liang et al. Online control-informed learning
Deng et al. Adaptive gait modeling and optimization for principally kinematic systems
Ponton et al. Risk sensitive nonlinear optimal control with measurement uncertainty
Cheng Efficient and principled robot learning: theory and algorithms
Baldauf et al. Iterative learning-based model predictive control for mobile robots in space applications
Fan et al. Efficient Estimation of Relaxed Model Parameters for Robust UAV Trajectory Optimization
Osborne et al. A review of safe online learning for nonlinear control systems