Esmaili et al., 2013 - Google Patents
Nonlinear process identification using fuzzy wavelet neural network based on particle swarm optimization algorithmEsmaili et al., 2013
View PDF- Document ID
- 16525714217618988993
- Author
- Esmaili A
- Shahbazian M
- Moslemi B
- Publication year
- Publication venue
- Journal of Basic Applied Science Research
External Links
Snippet
In this paper, the particle swarm optimization (PSO) is proposed to train fuzzy wavelet neural network (FWNN) for process system identification. The structure of FWNN is based on the fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve …
- 239000002245 particle 0 title abstract description 25
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
- G06N3/0635—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means using analogue means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
- G06K9/627—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches based on distances between the pattern to be recognised and training or reference patterns
- G06K9/6271—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches based on distances between the pattern to be recognised and training or reference patterns based on distances to prototypes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6251—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on a criterion of topology preservation, e.g. multidimensional scaling, self-organising maps
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6288—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
- G06K9/629—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/02—Computer systems based on specific mathematical models using fuzzy logic
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6296—Graphical models, e.g. Bayesian networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Zhaowei et al. | Short-term traffic flow forecasting method with MB-LSTM hybrid network | |
| Yilmaz et al. | Fuzzy wavelet neural network models for prediction and identification of dynamical systems | |
| Ebadzadeh et al. | IC-FNN: a novel fuzzy neural network with interpretable, intuitive, and correlated-contours fuzzy rules for function approximation | |
| Chen et al. | Non-linear system identification using particle swarm optimisation tuned radial basis function models | |
| Hsieh et al. | Effective learning rate adjustment of blind source separation based on an improved particle swarm optimizer | |
| Koohi et al. | Optimizing particle swarm optimization algorithm | |
| Bodyanskiy et al. | An adaptive learning algorithm for a neo fuzzy neuron. | |
| Masuyama et al. | Fast topological adaptive resonance theory based on correntropy induced metric | |
| Huang et al. | Unsupervised feature learning from finite data by message passing: discontinuous versus continuous phase transition | |
| Subramanian et al. | Complex-valued neuro-fuzzy inference system for wind prediction | |
| Subramanian et al. | A meta-cognitive interval type-2 fuzzy inference system classifier and its projection based learning algorithm | |
| Esmaili et al. | Nonlinear process identification using fuzzy wavelet neural network based on particle swarm optimization algorithm | |
| Altilio et al. | A sparse Bayesian model for random weight fuzzy neural networks | |
| Gao et al. | Training RBF neural network with hybrid particle swarm optimization | |
| Kurihara et al. | Analysis of convergence property of PSO and its application to nonlinear blind source separation | |
| Abiyev et al. | Differential evaluation learning of fuzzy wavelet neural networks for stock price prediction | |
| Kolodyazhniy et al. | Cascaded multiresolution spline-based fuzzy neural network | |
| Raja et al. | Accelerated mine blast algorithm for ANFIS training for solving classification problems | |
| Bodyanskiy et al. | Deep neo-fuzzy neural network and its accelerated learning | |
| Filiberto Cabrera et al. | Improving the MLP learning by using a method to calculate the initial weights of the network based on the quality of similarity measure | |
| Ashfahani | Autonomous deep learning: incremental learning of deep neural networks for evolving data streams | |
| Zhang et al. | Short-term load forecasting based on RBM and NARX neural network | |
| Smith et al. | Variable activation functions and spawning in neuroevolution | |
| Kwak et al. | Adaptive neuro-fuzzy networks with the aid of fuzzy granulation | |
| Yilmaz et al. | A fuzzy wavelet neural network model for system identification |