Morton et al., 1973 - Google Patents
Acoustic emissions of fatigue crack growthMorton et al., 1973
- Document ID
- 15928031186802283471
- Author
- Morton T
- Harrington R
- Bjeletich J
- Publication year
- Publication venue
- Engineering fracture mechanics
External Links
Snippet
Acoustic emissions of fatigue crack growth have been monitored and quantitatively correlated with growth rate and the applied range of stress intensity for high cycle fatigue of 2024-T851 aluminum alloy. The data suggest a more cogent relationship for acoustic …
- 238000011068 load 0 abstract description 43
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02827—Elastic parameters, strength or force
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/46—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
- G01M7/025—Measuring arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/40—Investigating hardness or rebound hardness
- G01N3/42—Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
- G01N3/06—Special adaptations of indicating or recording means
- G01N3/066—Special adaptations of indicating or recording means with electrical indicating or recording means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/25—Measuring force or stress in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R13/00—Arrangements for displaying electric variables or waveforms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H1/00—Measuring characteristics of vibrations in solids by using direct conduction to the detector
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/43—Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
- G01N21/431—Dip refractometers, e.g. using optical fibres
- G01N2021/432—Dip refractometers, e.g. using optical fibres comprising optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R23/00—Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Morton et al. | Acoustic emissions of fatigue crack growth | |
| US3924456A (en) | Methods and apparatus for detecting the presence of cracks in a workpiece by the use of stress waves emitted therefrom | |
| Dunegan et al. | Acoustic emission-a new nondestructive testing tool | |
| US5929315A (en) | Measuring crack growth by acoustic emission | |
| US6173613B1 (en) | Measuring crack growth by acoustic emission | |
| Harris et al. | The measurement and significance of energy in acoustic-emission testing: Purpose of investigation is to present an approach to measuring the energy sensed by an acoustic-emission transducer and to present experimental results that compare energy measurements with couting and RMS measurements in several different types of tests | |
| CA2207354C (en) | Apparatus and method for determining the dynamic indentation hardness of materials | |
| US5419176A (en) | Particle detection and analysis | |
| Scholz | Microfracturing of rock in compression. | |
| Scruby et al. | A new technique for the measurement of acoustic emission transients and their relationship to crack propagation | |
| Guild et al. | The application of acoustic emission to fibre-reinforced composite materials | |
| Rao | Acoustic emission and signal analysis | |
| Kumosa | Acoustic emission monitoring of stress corrosion cracks in aligned GRP | |
| Kishi et al. | Dynamic crack growth during pop-in fracture in 7075 aluminum alloy | |
| Sun et al. | Acoustic emission monitoring and analysis procedures utilized during deformation studies on geologic materials | |
| Wulf et al. | The measurement of dynamic stress-strain relationships at very high strains | |
| Fralich | Experimental Investigation of Effects of Random Loading on the Fatigue Life of Notched Cantilever-Beam Specimens of 7075-T6 Aluminum Alloy | |
| Grabec et al. | A comparison of high-performance acoustic emission transducers | |
| Smith Jr | Acoustic emission from spectrum fatigue cracks in 7075 aluminum | |
| Duesing | Acoustic emission testing of composite materials | |
| Klima et al. | Ultrasonic detection and measurement of fatigue cracks in notched specimens: A reflection technique is employed to detect and measure fatigue cracks, nondestructively during test, in circumferentially notched cylindrical specimens subjected to reversed axial-fatigue loading | |
| MAEDA | Spectral and source parameters of acoustic signals emitted by microcrack generation in a granite sample | |
| Houghton et al. | The application of a time-domain deconvolution technique for identification of experimental acoustic-emission signals: Signature analysis of pulse excitations by reconstruction of the pulse (s) prior to passing through the measurement system—systems modeling, technique analytical evaluation, and experimental application and results | |
| Holt et al. | Methods of measurement and assessment of the acoustic emission activity from the deformation of low alloy steels | |
| Davis et al. | Magnetostriction effects in crack length measurements |