[go: up one dir, main page]

Morton et al., 1973 - Google Patents

Acoustic emissions of fatigue crack growth

Morton et al., 1973

Document ID
15928031186802283471
Author
Morton T
Harrington R
Bjeletich J
Publication year
Publication venue
Engineering fracture mechanics

External Links

Snippet

Acoustic emissions of fatigue crack growth have been monitored and quantitatively correlated with growth rate and the applied range of stress intensity for high cycle fatigue of 2024-T851 aluminum alloy. The data suggest a more cogent relationship for acoustic …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/066Special adaptations of indicating or recording means with electrical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress in general
    • G01L1/25Measuring force or stress in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • G01N21/431Dip refractometers, e.g. using optical fibres
    • G01N2021/432Dip refractometers, e.g. using optical fibres comprising optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra

Similar Documents

Publication Publication Date Title
Morton et al. Acoustic emissions of fatigue crack growth
US3924456A (en) Methods and apparatus for detecting the presence of cracks in a workpiece by the use of stress waves emitted therefrom
Dunegan et al. Acoustic emission-a new nondestructive testing tool
US5929315A (en) Measuring crack growth by acoustic emission
US6173613B1 (en) Measuring crack growth by acoustic emission
Harris et al. The measurement and significance of energy in acoustic-emission testing: Purpose of investigation is to present an approach to measuring the energy sensed by an acoustic-emission transducer and to present experimental results that compare energy measurements with couting and RMS measurements in several different types of tests
CA2207354C (en) Apparatus and method for determining the dynamic indentation hardness of materials
US5419176A (en) Particle detection and analysis
Scholz Microfracturing of rock in compression.
Scruby et al. A new technique for the measurement of acoustic emission transients and their relationship to crack propagation
Guild et al. The application of acoustic emission to fibre-reinforced composite materials
Rao Acoustic emission and signal analysis
Kumosa Acoustic emission monitoring of stress corrosion cracks in aligned GRP
Kishi et al. Dynamic crack growth during pop-in fracture in 7075 aluminum alloy
Sun et al. Acoustic emission monitoring and analysis procedures utilized during deformation studies on geologic materials
Wulf et al. The measurement of dynamic stress-strain relationships at very high strains
Fralich Experimental Investigation of Effects of Random Loading on the Fatigue Life of Notched Cantilever-Beam Specimens of 7075-T6 Aluminum Alloy
Grabec et al. A comparison of high-performance acoustic emission transducers
Smith Jr Acoustic emission from spectrum fatigue cracks in 7075 aluminum
Duesing Acoustic emission testing of composite materials
Klima et al. Ultrasonic detection and measurement of fatigue cracks in notched specimens: A reflection technique is employed to detect and measure fatigue cracks, nondestructively during test, in circumferentially notched cylindrical specimens subjected to reversed axial-fatigue loading
MAEDA Spectral and source parameters of acoustic signals emitted by microcrack generation in a granite sample
Houghton et al. The application of a time-domain deconvolution technique for identification of experimental acoustic-emission signals: Signature analysis of pulse excitations by reconstruction of the pulse (s) prior to passing through the measurement system—systems modeling, technique analytical evaluation, and experimental application and results
Holt et al. Methods of measurement and assessment of the acoustic emission activity from the deformation of low alloy steels
Davis et al. Magnetostriction effects in crack length measurements