[go: up one dir, main page]

Wei et al., 2019 - Google Patents

Effect of Mg2+/F− co-doping on electrochemical performance of LiNi0. 5Mn1. 5O4 for 5 V lithium-ion batteries

Wei et al., 2019

Document ID
14960139243697625681
Author
Wei A
Li W
Chang Q
Bai X
He R
Zhang L
Liu Z
Wang Y
Publication year
Publication venue
Electrochimica Acta

External Links

Snippet

Abstract Mg 2+/F− co-doped LiNi 0.5 Mn 1.5 O 4 cathode material was synthesized by a facile one-step solid-state process. The effect of Mg 2+/F− co-doping on grain morphology, phase structure, and electrochemical properties was studied by a series of characterizations …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds

Similar Documents

Publication Publication Date Title
Wei et al. Effect of Mg2+/F− co-doping on electrochemical performance of LiNi0. 5Mn1. 5O4 for 5 V lithium-ion batteries
Shi et al. Structure and electrochemical performance of CaF2 coated LiMn1/3Ni1/3Co1/3O2 cathode material for Li-ion batteries
Xu et al. A comparative study of crystalline and amorphous Li0. 5La0. 5TiO3 as surface coating layers to enhance the electrochemical performance of LiNi0. 815Co0. 15Al0. 035O2 cathode
Zong et al. Influence of Ti doping on microstructure and electrochemical performance of LiNi0. 5Mn1. 5O4 cathode material for lithium-ion batteries
EP2471134B1 (en) Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
EP2619828B1 (en) Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
Prabakar et al. W-doped LiWxNi0. 5Mn1. 5− xO4 cathodes for the improvement of high rate performances in Li ion batteries
Bai et al. Preparation and electrochemical properties of Mg2+ and F− co-doped Li4Ti5O12 anode material for use in the lithium-ion batteries
Wang et al. High-rate performance O3-NaNi0. 4Mn0. 4Cu0. 1Ti0. 1O2 as a cathode for sodium ion batteries
Li et al. LiNi0. 5Mn1. 5O4 microrod with ultrahigh Mn3+ content: A high performance cathode material for lithium ion battery
Sun et al. Surface modification of Li (Li0. 17Ni0. 2Co0. 05Mn0. 58) O2 with LiAlSiO4 fast ion conductor as cathode material for Li-ion batteries
TW201339098A (en) Mixed phase lithium metal oxide compositions with desirable battery performance
Mu et al. Enhancing the electrochemical performance of LiNi0. 5Mn1. 5O4 cathode material by a conductive LaCoO3 coating
Qu et al. Flux growth and enhanced electrochemical properties of LiNi0. 5Co0. 2Mn0. 3O2 cathode material by excess lithium carbonate for lithium-ion batteries
Wang et al. Improving electrochemical performance of spherical LiMn2O4 cathode materials for lithium ion batteries by Al-F codoping and AlF3 surface coating
Zhao et al. Structure and electrochemical performance of single-crystal Li1. 05Ni0. 1Mn1. 9O3. 98F0. 02 coated by Li–La–Ti–O solid electrolyte
Wu et al. Effect of Ce-doping on the structure and electrochemical performance of lithium trivanadate prepared by a citrate sol–gel method
Lu et al. Improving the electrochemical properties of Li1. 2Mn0. 52Co0. 08Ni0. 2O2 cathode material by uniform surface nanocoating with samarium fluoride through depositional-hydrothermal route
Wu et al. Enhanced cyclic stability at elevated temperature of spinel LiNi0. 5Mn1. 5O4 by Li4Ti5O12 coating as cathode material for high voltage lithium ion batteries
Hou et al. Elucidating the effect of Nb doping on the electrochemical performance of Fe–Mn based Li-rich cathode materials
Zhang et al. Synthesis and performance of fluorine substituted Li1. 05 (Ni0. 5Mn0. 5) 0.95 O2− xFx cathode materials modified by surface coating with FePO4
Tao et al. Rational structure of rod-like single crystal LiNi0. 9Co0. 05Mn0. 04Al0. 01O2 cathode for superior-stable lithium-ion battery
Yan et al. Towards ultrafast lithium-ion batteries: A novel atomic layer deposition-seeded preparation of Li4Ti5O12-TiN-TiC anodes
Zhou et al. Titanium-doped P2-type Na0. 67Co0. 67Mn0. 33-χTiχO2 (0≤ χ≤ 0.2) as novel cathodes for sodium ion batteries with superior-rate
Coban Metal Oxide (SnO2) Modified LiNi0. 8Co0. 2O2 Cathode Material for Lithium ION Batteries