AlKhuraym et al., 2022 - Google Patents
Arabic sign language recognition using lightweight cnn-based architectureAlKhuraym et al., 2022
View PDF- Document ID
- 14875061286979107207
- Author
- AlKhuraym B
- Ismail M
- Bchir O
- Publication year
- Publication venue
- International Journal of Advanced Computer Science and Applications
External Links
Snippet
People who have been deprived from communicating through words like the rest of humans, usually use sign language. For sign language, the main signs features are the handshape, the location, the movement, the orientation and the non-manual component. The vast spread …
- 238000000034 method 0 abstract description 34
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
- G06K9/627—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches based on distances between the pattern to be recognised and training or reference patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6256—Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
- G06K9/6807—Dividing the references in groups prior to recognition, the recognition taking place in steps; Selecting relevant dictionaries
- G06K9/6842—Dividing the references in groups prior to recognition, the recognition taking place in steps; Selecting relevant dictionaries according to the linguistic properties, e.g. English, German
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4604—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6288—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/20—Image acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AlKhuraym et al. | Arabic sign language recognition using lightweight cnn-based architecture | |
| Das et al. | A deep sign language recognition system for Indian sign language | |
| Sardar et al. | Iris segmentation using interactive deep learning | |
| Moung et al. | Ensemble-based face expression recognition approach for image sentiment analysis | |
| Anand et al. | Real time noisy dataset implementation of optical character identification using CNN | |
| Duwairi et al. | Automatic recognition of Arabic alphabets sign language using deep learning. | |
| Kumar et al. | Mediapipe and cnns for real-time asl gesture recognition | |
| Aloysius et al. | A scale space model of weighted average CNN ensemble for ASL fingerspelling recognition | |
| Barbhuiya et al. | Gesture recognition from RGB images using convolutional neural network‐attention based system | |
| Deshpande et al. | Hand gesture recognition using mediapipe and cnn for indian sign language and conversion to speech format for indian regional languages | |
| Tushar et al. | Faster convergence and reduction of overfitting in numerical hand sign recognition using DCNN | |
| Singh et al. | A comprehensive review on sign language recognition using machine learning | |
| Hegadi et al. | Recognition of Marathi handwritten numerals using multi-layer feed-forward neural network | |
| Jaiswal et al. | An efficient binarized neural network for recognizing two hands indian sign language gestures in real-time environment | |
| Javaid et al. | Interpretation of expressions through hand signs using deep learning techniques | |
| Nahar et al. | A robust model for translating arabic sign language into spoken arabic using deep learning | |
| Chooi et al. | Handwritten character recognition using convolutional neural network | |
| Srininvas et al. | A framework to recognize the sign language system for deaf and dumb using mining techniques | |
| Sivaraman et al. | Sign language recognition using improved seagull optimization algorithm with deep learning model | |
| Suganthe et al. | A CNN model based approach for offline handwritten Tamil text recognition system. | |
| Ganesan et al. | Novel Cognitive Assisted Adaptive Frame Selection for Continuous Sign Language Recognition in Videos Using ConvLSTM. | |
| Krishnaveni et al. | An assertive framework for automatic tamil sign language recognition system using computational intelligence | |
| Fayyaz et al. | CNN and traditional classifiers performance for sign language recognition | |
| Rajput et al. | Handwritten Digit Recognition using Convolution Neural Networks | |
| Thushara et al. | Automatic American sign language prediction for static and dynamic gestures using KFM-CNN |