[go: up one dir, main page]

Barbosa et al., 2021 - Google Patents

Risk-aware motion planning in partially known environments

Barbosa et al., 2021

View PDF
Document ID
1460347334704348775
Author
Barbosa F
Lacerda B
Duckworth P
Tumova J
Hawes N
Publication year
Publication venue
2021 60th IEEE Conference on Decision and Control (CDC)

External Links

Snippet

Recent trends envisage robots being deployed in areas deemed dangerous to humans, such as buildings with gas and radiation leaks. In such situations, the model of the underlying hazardous process might be unknown to the agent a priori, giving rise to the …
Continue reading at arxiv.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/005Probabilistic networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0044Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement by providing the operator with a computer generated representation of the environment of the vehicle, e.g. virtual reality, maps
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2201/00Application

Similar Documents

Publication Publication Date Title
Barbosa et al. Risk-aware motion planning in partially known environments
US11880188B2 (en) Intelligent distribution of data for robotic and autonomous systems
Maly et al. Iterative temporal motion planning for hybrid systems in partially unknown environments
Bopardikar et al. Multiobjective path planning: Localization constraints and collision probability
Pairet et al. Online mapping and motion planning under uncertainty for safe navigation in unknown environments
Chen et al. Broadcast your weaknesses: Cooperative active pose-graph SLAM for multiple robots
Jasour et al. Convex risk bounded continuous-time trajectory planning in uncertain nonconvex environments
Yoon et al. Predictive runtime monitoring for mobile robots using logic-based bayesian intent inference
US11513533B2 (en) Topological belief space planning
Bouman et al. Adaptive coverage path planning for efficient exploration of unknown environments
Chaves et al. Efficient planning with the Bayes tree for active SLAM
Senanayake The role of predictive uncertainty and diversity in embodied ai and robot learning
Rafieisakhaei et al. Feedback motion planning under non-gaussian uncertainty and non-convex state constraints
Wiedemann et al. Probabilistic modeling of gas diffusion with partial differential equations for multi-robot exploration and gas source localization
Luna et al. Optimal and efficient stochastic motion planning in partially-known environments
Thomas et al. An integrated localization, motion planning and obstacle avoidance algorithm in belief space
Ramachandran et al. A probabilistic approach to automated construction of topological maps using a stochastic robotic swarm
Manzi et al. Orbital anomaly reconstruction using deep symbolic regression
Huang et al. Risk conditioned neural motion planning
Englot et al. Sampling-based min-max uncertainty path planning
Regev et al. Decentralized multi-robot belief space planning in unknown environments via identification and efficient re-evaluation of impacted paths
Tran et al. Active Sensing Strategy: Multi‐Modal, Multi‐Robot Source Localization and Mapping in Real‐World Settings With Fixed One‐Way Switching
Alpert et al. Inspection planning under execution uncertainty
Manoharan et al. Multi-AAV cooperative path planning using nonlinear model predictive control with localization constraints
Hawes et al. Risk-aware motion planning in partially known environments