[go: up one dir, main page]

Abdelghany et al., 2009 - Google Patents

A low flicker-noise high conversion gain RF-CMOS mixer with differential active inductor

Abdelghany et al., 2009

View PDF
Document ID
12642175840838460382
Author
Abdelghany M
Pokharel R
Kanaya H
Yoshida K
Publication year
Publication venue
Proc. 2009 Korea-Japan Micro Wave Conference

External Links

Snippet

The design of a low noise figure (NF), high conversion gain (CG) double-balanced, Gilbert- cell mixer is presented. Since the noise figure of the RF CMOS mixer is strongly affected by flicker noise (1/f), a dynamic current injection technique is used to reduce the flicker noise …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1212Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1433Balanced arrangements with transistors using bipolar transistors
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0088Reduction of intermodulation, nonlinearities, adjacent channel interference; intercept points of harmonics or intermodulation products
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1458Double balanced arrangements, i.e. where both input signals are differential
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0001Circuit elements of demodulators
    • H03D2200/0033Current mirrors
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B19/00Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B1/00Details

Similar Documents

Publication Publication Date Title
Mak et al. A 0.46-mm $^{2} $4-dB NF unified receiver front-end for full-band mobile TV in 65-nm CMOS
Selvakumar et al. Sub-mW current re-use receiver front-end for wireless sensor network applications
Li et al. G/sub m/-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-/spl mu/m CMOS
Deen et al. Low-power CMOS integrated circuits for radio frequency applications
Zijie et al. A 1-to 10-GHz RF and Wideband IF Cross-Coupled Gilbert Mixer in 0.13-$\mu\hbox {m} $ CMOS
Chen et al. A 24-GHz Receiver Frontend With an LO Signal Generator in 0.18-$\mu $ m CMOS
Yeh et al. Design and analysis of a $ W $-band divide-by-three injection-locked frequency divider using second harmonic enhancement technique
Barzgari et al. A current re-use quadrature RF receiver front-end for low power applications: Blixator circuit
Kargaran et al. Design considerations for a sub-mW receiver front-end for Internet-of-Things
Chang et al. A 24GHz down-conversion mixer with low noise and high gain
Alvarado et al. Low power RF circuit design in standard CMOS technology
Kan et al. A 2-v 900-mhz cmos mixer for gsm receivers
Wan et al. A very low power quadrature VCO with modified current-reuse and back-gate coupling topology
Kia et al. A high gain and low flicker noise CMOS mixer with low flicker noise corner frequency using tunable differential active inductor
Neeraja et al. Review of ultra low power receiver front-end designs
Abdelghany et al. A low flicker-noise high conversion gain RF-CMOS mixer with differential active inductor
Huang CMOS RF design-the low power dimension
Jiang et al. A 750μW− 88dBm-Sensitivity CMOS Sub-harmonic Phase-Tracking Receiver
Stanic et al. A 0.5 V Receiver in 90 nm CMOS for 2.4 GHz Applications
Abdelghany et al. A low flicker noise direct conversion receiver for IEEE 802.11 g wireless LAN using differential active inductor
Seo et al. A low-noise UWB CMOS mixer using switched biasing technique
Park et al. A 2.4-㎓ Low-power Low-IF Receiver Employing a Quadrature Low-noise Amplifier for Bluetooth Low Energy Applications
Balan et al. A coin-battery-powered LDO-Free 2.4-GHz Bluetooth Low Energy/ZigBee receiver consuming 2 mA
Mahmoud et al. Low flicker-noise rf cmos gilbert-cell mixer for 2.4 ghz wireless communication systems
Abdelghany et al. Flicker noise reduction in RF CMOS mixer using differential active inductor