[go: up one dir, main page]

Chung et al., 2008 - Google Patents

Effect of geometry on fluid mixing of the rhombic micromixers

Chung et al., 2008

Document ID
11902071576836680582
Author
Chung C
Shih T
Publication year
Publication venue
Microfluidics and Nanofluidics

External Links

Snippet

A planar micromixer with rhombic microchannels and a converging-diverging element has been proposed for its effective mixing. Both CFD-ACE numerical simulations and experiments were used to design and investigate the effect of three parameters (number of …
Continue reading at link.springer.com (other versions)

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated micro-fluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated micro-fluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated micro-fluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated micro-fluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated micro-fluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated micro-fluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING, DISPERSING
    • B01F13/00Other mixers; Mixing plant, including combinations of mixers, e.g. of dissimilar mixers
    • B01F13/0059Micromixers
    • B01F13/0061Micromixers using specific means for arranging the streams to be mixed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING, DISPERSING
    • B01F5/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F5/06Mixers in which the components are pressed together through slits, orifices, or screens; Static mixers; Mixers of the fractal type
    • B01F5/0602Static mixers, i.e. mixers in which the mixing is effected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F5/0609Mixing tubes, e.g. the material being submitted to a substantially radial movement or to a movement partially in reverse direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING, DISPERSING
    • B01F5/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F5/04Injector mixers, i.e. one or more components being added to a flowing main component
    • B01F5/0403Mixing conduits or tubes, i.e. conduits or tubes through which the main component is flown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0636Focussing flows, e.g. to laminate flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure

Similar Documents

Publication Publication Date Title
Chung et al. Effect of geometry on fluid mixing of the rhombic micromixers
Das et al. Numerical and experimental study of passive fluids mixing in micro-channels of different configurations
Shih et al. A high-efficiency planar micromixer with convection and diffusion mixing over a wide Reynolds number range
Gidde et al. Flow field analysis of a passive wavy micromixer with CSAR and ESAR elements
Fang et al. Mixing enhancement by simple periodic geometric features in microchannels
Ansari et al. Vortex micro T-mixer with non-aligned inputs
Lin et al. Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel
Mao et al. Milliseconds microfluidic chaotic bubble mixer
Chung et al. A rhombic micromixer with asymmetrical flow for enhancing mixing
Chung et al. Droplet dynamics passing through obstructions in confined microchannel flow
Kuo et al. Design optimization of micromixer with square-wave microchannel on compact disk microfluidic platform
Jännig et al. A polymeric high-throughput pressure-driven micromixer using a nanoporous membrane
Sahu et al. Analytical, numerical and experimental investigations of mixing fluids in microchannel
TWI230683B (en) The micromixer with overlapping-crisscross entrance
Karnik Microfluidic mixing
Chen et al. Evaluation of passive mixing behaviors in a pillar obstruction poly (dimethylsiloxane) microfluidic mixer using fluorescence microscopy
Fan et al. Rapid microfluidic mixer utilizing sharp corner structures
Moritani et al. Generation of uniform-size droplets by multistep hydrodynamic droplet division in microfluidic circuits
Li et al. A 3-D overbridge-shaped micromixer for fast mixing over a wide range of reynolds numbers
Nady et al. Improvement in mixing efficiency of microfluidic passive mixers functionalized by microstructures created with proton beam lithography
Mehta et al. Reaction characteristics of non-Newtonian species in a microreactor: The role of electroosmotic vortices
Sahoo et al. Effect of sinusoidal heated blocks on electroosmotic flow mixing in a microchannel with modified topology
Mo et al. Passive nanofluidic diode using non-uniform nanochannels
Lam et al. Depthwise averaging approach to cross-stream mixing in a pressure-driven microchannel flow
Kumar et al. Effect of electrode length and ac frequency on mixing in a diamond-shaped split-and-recombine electroosmotic micromixer