[go: up one dir, main page]

Dibaei et al., 2020 - Google Patents

Full-duplex medium access control protocols in wireless networks: A survey

Dibaei et al., 2020

View PDF
Document ID
11942859791811279461
Author
Dibaei M
Ghaffari A
Publication year
Publication venue
Wireless Networks

External Links

Snippet

Abstract Medium Access Control (MAC) protocol plays an important role in full-duplex wireless networks. Theoretically, full-duplex communications have this ability to increase the capacity of traditional half-duplex wireless systems by up to twice. However, designing and …
Continue reading at www.academia.edu (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/12Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
    • H04W72/1205Schedule definition, set-up or creation
    • H04W72/1215Schedule definition, set-up or creation for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organizing networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/0406Wireless resource allocation involving control information exchange between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/10Wireless resource allocation where an allocation plan is defined based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/08Wireless resource allocation where an allocation plan is defined based on quality criteria
    • H04W72/085Wireless resource allocation where an allocation plan is defined based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W28/00Network traffic or resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W4/00Mobile application services or facilities specially adapted for wireless communication networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security

Similar Documents

Publication Publication Date Title
Dibaei et al. Full-duplex medium access control protocols in wireless networks: A survey
Lu et al. A dedicated multi-channel MAC protocol design for VANET with adaptive broadcasting
Jha et al. Design of OMC-MAC: an opportunistic multi-channel MAC with QoS provisioning for distributed cognitive radio networks
Boroumand et al. A Review of Techniques to Resolve the Hidden Node Problem in Wireless Networks.
Almotairi et al. Multichannel medium access control for ad hoc wireless networks
Joshi et al. Decentralized predictive MAC protocol for ad hoc cognitive radio networks
Rukaiya et al. CFFD-MAC: A hybrid MAC for collision free full-duplex communication in wireless ad-hoc networks
Saadat et al. License assisted access-WiFi coexistence with TXOP backoff for LTE in unlicensed band
Liu et al. A polling-based traffic-aware MAC protocol for centralized full-duplex wireless networks
Hossain et al. A distributed multichannel MAC protocol for rendezvous establishment in cognitive radio ad hoc networks
Singh et al. Comparative study of MAC protocols for wireless mesh network
Lim et al. A self-scheduling multi-channel cognitive radio MAC protocol based on cooperative communications
Zeeshan et al. Modeling packet loss probability and busy time in multi-hop wireless networks
Krishna et al. Sequencing technique: An enhancement to 802.11 medium access control to improve the performance of wireless networks
Hans et al. A review of de-facto MAC standard: IEEE 802.11 DCF
Mishra et al. MAC protocol for two level QoS support in cognitive radio network
Kosek-Szott et al. A new busy signal-based MAC protocol supporting QoS for ad-hoc networks with hidden nodes
Fihri et al. A survey on decentralized random access MAC protocols for cognitive radio networks
Mamadou et al. Enhancing the CSMA/CA of IEEE 802.15. 4 for better coexistence with IEEE 802.11
Elmachkour et al. New insights from a delay analysis for cognitive radio networks with and without reservation
Lin et al. EHM: a novel efficient protocol based handshaking mechanism for underwater acoustic sensor networks
Rhee et al. Hidden terminal aware clustering for large-scale D2D networks
Joshi et al. IEEE 802.11 DCF MAC Protocol for CR-Enabled WLAN in AdHoc and Infrastructure modes
Bononi et al. Design and performance evaluation of cross layered MAC and clustering solutions for wireless ad hoc networks
Khalid et al. Coherence time-based cooperative mac protocol 1 for wireless ad hoc networks