Pires et al., 2020 - Google Patents
Euclid: Reconstruction of weak-lensing mass maps for non-Gaussianity studiesPires et al., 2020
View PDF- Document ID
- 11502054998525405041
- Author
- Pires S
- Vandenbussche V
- Kansal V
- Bender R
- Blot L
- Bonino D
- Boucaud A
- Brinchmann J
- Capobianco V
- Carretero J
- Castellano M
- Cavuoti S
- Clédassou R
- Congedo G
- Conversi L
- Corcione L
- Dubath F
- Fosalba P
- Frailis M
- Franceschi E
- Fumana M
- Grupp F
- Hormuth F
- Kermiche S
- Knabenhans M
- Kohley R
- Kubik B
- Kunz M
- Ligori S
- Lilje P
- Lloro I
- Maiorano E
- Marggraf O
- Massey R
- Meylan G
- Padilla C
- Paltani S
- Pasian F
- Poncet M
- Potter D
- Raison F
- Rhodes J
- Roncarelli M
- Saglia R
- Schneider P
- Secroun A
- Serrano S
- Stadel J
- Crespí P
- Tereno I
- Toledo-Moreo R
- Wang Y
- Publication year
- Publication venue
- Astronomy & Astrophysics
External Links
Snippet
Weak lensing, which is the deflection of light by matter along the line of sight, has proven to be an efficient method for constraining models of structure formation and reveal the nature of dark energy. So far, most weak-lensing studies have focused on the shear field that can be …
- 230000000694 effects 0 abstract description 99
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
- G06F17/141—Discrete Fourier transforms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
- G06F17/147—Discrete orthonormal transforms, e.g. discrete cosine transform, discrete sine transform, and variations therefrom, e.g. modified discrete cosine transform, integer transforms approximating the discrete cosine transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/4806—Computations with complex numbers
- G06F7/4818—Computations with complex numbers using coordinate rotation digital computer [CORDIC]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06G—ANALOGUE COMPUTERS
- G06G7/00—Devices in which the computing operation is performed by varying electric or magnetic quantities
- G06G7/12—Arrangements for performing computing operations, e.g. operational amplifiers
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Pires et al. | Euclid: Reconstruction of weak-lensing mass maps for non-Gaussianity studies | |
| Jeffrey et al. | Dark Energy Survey Year 3 results: Curved-sky weak lensing mass map reconstruction | |
| Ajani et al. | Euclid preparation-XXVIII. Forecasts for ten different higher-order weak lensing statistics | |
| Aghanim et al. | Planck 2018 results-viii. gravitational lensing | |
| Remy et al. | Probabilistic mass-mapping with neural score estimation | |
| Ade et al. | Planck 2015 results-XVII. Constraints on primordial non-Gaussianity | |
| Oppermann et al. | Estimating extragalactic Faraday rotation | |
| Millea et al. | Sampling-based inference of the primordial CMB and gravitational lensing | |
| Pires et al. | Gap interpolation by inpainting methods: Application to ground and space-based asteroseismic data | |
| Benoit-Lévy et al. | Full-sky CMB lensing reconstruction in presence of sky-cuts | |
| Picquenot et al. | Novel method for component separation of extended sources in x-ray astronomy | |
| Regaldo-Saint Blancard et al. | A new approach for the statistical denoising of Planck interstellar dust polarization data | |
| Ajani et al. | Starlet ℓ1-norm for weak lensing cosmology | |
| Mboula et al. | Super-resolution method using sparse regularization for point-spread function recovery | |
| Starck et al. | Weak-lensing mass reconstruction using sparsity and a Gaussian random field | |
| Martinet et al. | Impact of baryons in cosmic shear analyses with tomographic aperture mass statistics | |
| Poletti et al. | Making maps of cosmic microwave background polarization for B-mode studies: the POLARBEAR example | |
| Chen et al. | Extensive analysis of reconstruction algorithms for DESI 2024 baryon acoustic oscillations | |
| Ayçoberry et al. | UNIONS: The impact of systematic errors on weak-lensing peak counts | |
| Schmitz et al. | Euclid: Nonparametric point spread function field recovery through interpolation on a graph Laplacian | |
| Cai et al. | Structured gradient descent for fast robust low-rank Hankel matrix completion | |
| Lanzieri et al. | Optimal neural summarization for full-field weak lensing cosmological implicit inference | |
| Watts et al. | From BeyondPlanck to Cosmoglobe: Preliminary WMAP Q-band analysis | |
| Yahia et al. | Description of turbulent dynamics in the interstellar medium: multifractal-microcanonical analysis-I. Application to Herschel observations of the musca filament | |
| Nammour et al. | ShapeNet: Shape constraint for galaxy image deconvolution |