Kayadibi et al., 2022 - Google Patents
An eye state recognition system using transfer learning: AlexNet-based deep convolutional neural networkKayadibi et al., 2022
View HTML- Document ID
- 1140713149316629684
- Author
- Kayadibi I
- Güraksın G
- Ergün U
- Özmen Süzme N
- Publication year
- Publication venue
- International Journal of Computational Intelligence Systems
External Links
Snippet
For eye state recognition (closed or open), a mechanism based on deep convolutional neural network (DCNN) using the Zhejiang University (ZJU) and Closed Eyes in the Wild (CEW) dataset, has been proposed in this paper. In instances where blinking is …
- 230000001537 neural 0 title abstract description 36
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
- G06K9/627—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches based on distances between the pattern to be recognised and training or reference patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6256—Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4604—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections
- G06K9/4609—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections by matching or filtering
- G06K9/4619—Biologically-inspired filters, e.g. receptive fields
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00597—Acquiring or recognising eyes, e.g. iris verification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/18—Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kayadibi et al. | An eye state recognition system using transfer learning: AlexNet-based deep convolutional neural network | |
| Park et al. | Driver drowsiness detection system based on feature representation learning using various deep networks | |
| Denil et al. | Learning where to attend with deep architectures for image tracking | |
| Liu et al. | Real time detection of driver fatigue based on CNN‐LSTM | |
| Meshach et al. | Retracted article: real-time facial expression recognition for affect identification using multi-dimensional svm | |
| Alenazy et al. | Gravitational search algorithm based optimized deep learning model with diverse set of features for facial expression recognition | |
| Ghosh et al. | Feature selection for facial emotion recognition using late hill-climbing based memetic algorithm | |
| Dong et al. | Comparison of random forest, random ferns and support vector machine for eye state classification | |
| Tapia et al. | Gender classification from NIR iris images using deep learning | |
| Agbo-Ajala et al. | Face-based age and gender classification using deep learning model | |
| Badah et al. | Automatic eye disease detection using machine learning and deep learning models | |
| Qin et al. | Finger-vein quality assessment by representation learning from binary images | |
| Zhao et al. | Driver drowsiness recognition via transferred deep 3D convolutional network and state probability vector | |
| Rahman et al. | EyeNet: An improved eye states classification system using convolutional neural network | |
| Mahjabin et al. | Age estimation from facial image using convolutional neural network (CNN) | |
| Zhao et al. | A Spatio‐Temporal Siamese Neural Network for Multimodal Handwriting Abnormality Screening of Parkinson’s Disease | |
| Pichandi et al. | Hybrid deep models for parallel feature extraction and enhanced emotion state classification | |
| Srivastava et al. | An improved approach towards biometric face recognition using artificial neural network | |
| Mansouri-Benssassi et al. | Generalisation and robustness investigation for facial and speech emotion recognition using bio-inspired spiking neural networks | |
| Lutes et al. | Convolutional spiking neural networks for intent detection based on anticipatory brain potentials using electroencephalogram | |
| Avola et al. | Analyzing EEG data with machine and deep learning: A benchmark | |
| Balasubramani et al. | Ensemble of Deep Learning with Crested Porcupine Optimizer Based Autism Spectrum Disorder Detection Using Facial Images. | |
| Ebied et al. | Evaluation of unsupervised feature extraction neural networks for face recognition | |
| Jagadeesh et al. | Dynamic FERNet: Deep learning with optimal feature selection for face expression recognition in video | |
| Rathi et al. | Selection of relevant visual feature sets for enhanced depression detection using incremental linear discriminant analysis |