Tan et al., 2011 - Google Patents
A dual-loop clock and data recovery circuit with compact quarter-rate CMOS linear phase detectorTan et al., 2011
View PDF- Document ID
- 11464865021389450786
- Author
- Tan Y
- Yeo K
- Boon C
- Do M
- Publication year
- Publication venue
- IEEE Transactions on Circuits and Systems I: Regular Papers
External Links
Snippet
This paper presents a 5-Gb/s dual-loop clock and data recovery (CDR) circuit with a compact quarter-rate linear phase detector (PD). The proposed PD not only reduces the complexity of the circuit structure but also employs an UP pulse-widening technique to …
- 238000011084 recovery 0 title abstract description 25
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/089—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
- H03L7/0891—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
- H03L7/0895—Details of the current generators
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/087—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using at least two phase detectors or a frequency and phase detector in the loop
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/081—Details of the phase-locked loop provided with an additional controlled phase shifter
- H03L7/0812—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
- H03L7/0814—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the phase shifting device being digitally controlled
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/099—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
- H03L7/0995—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator
- H03L7/0998—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator using phase interpolation
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/093—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/091—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector using a sampling device
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/027—Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
- H03K3/037—Bistable circuits
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/027—Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
- H03K3/03—Astable circuits
- H03K3/0315—Ring oscillators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
- H04L7/033—Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating pulses not covered by one of the other main groups in this subclass
- H03K2005/00013—Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
- H03K2005/00019—Variable delay
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Moon et al. | An all-analog multiphase delay-locked loop using a replica delay line for wide-range operation and low-jitter performance | |
| Tan et al. | A dual-loop clock and data recovery circuit with compact quarter-rate CMOS linear phase detector | |
| Savoj et al. | A 10-Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector | |
| US7046056B2 (en) | System with dual rail regulated locked loop | |
| US6690216B2 (en) | System and method for compensating for supply voltage induced clock delay mismatches | |
| US20040210790A1 (en) | 0.6-2.5 GBaud CMOS tracked 3X oversampling transceiver with dead zone phase detection for robust clock/data recovery | |
| US6275555B1 (en) | Digital delay locked loop for adaptive de-skew clock generation | |
| Xiao et al. | A 6.15–10.9 Gb/s 0.58 pJ/Bit Reference-Less Half-Rate Clock and Data Recovery With “Phase Reset” Scheme | |
| Agrawal et al. | An 8$\,\times\, $5 Gb/s Parallel Receiver With Collaborative Timing Recovery | |
| Savoj et al. | Design of half-rate clock and data recovery circuits for optical communication systems | |
| Seo et al. | A 5-Gbit/s Clock-and Data-Recovery Circuit With 1/8-Rate Linear Phase Detector in 0.18-${\rm\mu}\hbox {m} $ CMOS Technology | |
| Jia | A delay-locked loop for multiple clock phases/delays generation | |
| US7103131B1 (en) | System and method for half-rate clock phase detection | |
| Xia et al. | A 10-GHz low-power serial digital majority voter based on moving accumulative sign filter in a PS-/PI-based CDR | |
| Salem et al. | All-digital clock and data recovery circuit for USB applications in 65 nm CMOS technology | |
| US7760030B2 (en) | Phase detection circuit and method thereof and clock recovery circuit and method thereof | |
| Jeon et al. | Area efficient 4Gb/s clock data recovery using improved phase interpolator with error monitor | |
| Rennie et al. | A novel tri-state binary phase detector | |
| Yeo et al. | Non-sequential linear CMOS phase detector for CDR applications | |
| Wang et al. | A 1–6.5 Gbps dual-loop CDR design with Coarse-fine Tuning VCO and modified DQFD | |
| Moazedi et al. | A low-power multiphase-delay-locked loop with a self-biased charge pump and wide-range linear delay element | |
| Kim et al. | A 1.0 Gbps clock and data recovery circuit with two-XOR phase-frequency detector | |
| Lee et al. | Wide Lock-in Range CDR with Modified DQFD and Coarse-fine Tuning Technique | |
| Kao et al. | A self‐calibrated delay‐locked loop with low static phase error | |
| Wong et al. | A 2.5 Gbps CMOS data serializer |