[go: up one dir, main page]

Vázquez, 2010 - Google Patents

Pattern recognition using spiking neurons and firing rates

Vázquez, 2010

View PDF
Document ID
11323108198108676360
Author
Vázquez R
Publication year
Publication venue
Ibero-American Conference on Artificial Intelligence

External Links

Snippet

Different varieties of artificial neural networks have proved their power in several pattern recognition problems, particularly feed-forward neural networks. Nevertheless, these kinds of neural networks require of several neurons and layers in order to success when they are …
Continue reading at www.academia.edu (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/0635Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means using analogue means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/04Architectures, e.g. interconnection topology
    • G06N3/049Temporal neural nets, e.g. delay elements, oscillating neurons, pulsed inputs
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/04Architectures, e.g. interconnection topology
    • G06N3/0472Architectures, e.g. interconnection topology using probabilistic elements, e.g. p-rams, stochastic processors
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6251Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on a criterion of topology preservation, e.g. multidimensional scaling, self-organising maps
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/12Computer systems based on biological models using genetic models
    • G06N3/126Genetic algorithms, i.e. information processing using digital simulations of the genetic system
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image

Similar Documents

Publication Publication Date Title
Booij et al. A gradient descent rule for spiking neurons emitting multiple spikes
US9418331B2 (en) Methods and apparatus for tagging classes using supervised learning
Freeman et al. Taming chaos: stabilization of aperiodic attractors by noise [olfactory system model]
Yu et al. Spike timing or rate? Neurons learn to make decisions for both through threshold-driven plasticity
Grüning et al. Spiking neural networks: Principles and challenges.
Vazquez Training spiking neural models using cuckoo search algorithm
US20150278680A1 (en) Training, recognition, and generation in a spiking deep belief network (dbn)
DePasquale et al. Using firing-rate dynamics to train recurrent networks of spiking model neurons
Chang et al. Biologically modeled noise stabilizing neurodynamics for pattern recognition
US9652711B2 (en) Analog signal reconstruction and recognition via sub-threshold modulation
Roy et al. An online unsupervised structural plasticity algorithm for spiking neural networks
Vazquez et al. Integrate and fire neurons and their application in pattern recognition
Vazquez Izhikevich neuron model and its application in pattern recognition
Duarte et al. Dynamic stability of sequential stimulus representations in adapting neuronal networks
Ahmed et al. Probabilistic inference using stochastic spiking neural networks on a neurosynaptic processor
Vázquez Pattern recognition using spiking neurons and firing rates
Moon et al. Neural connectivity inference with spike-timing dependent plasticity network
Sala et al. Solving graph algorithms with networks of spiking neurons
Kunkle et al. Pulsed neural networks and their application
Vázquez et al. Training spiking neurons by means of particle swarm optimization
Saboo et al. Composer classification based on temporal coding in adaptive spiking neural networks
Obst et al. Guided self-organization of input-driven recurrent neural networks
Bogacz et al. Frequency-based error backpropagation in a cortical network
Jin et al. Calcium-modulated supervised spike-timing-dependent plasticity for readout training and sparsification of the liquid state machine
Jankovic A new simple/spl infin/OH neuron model as a biologically plausible principal component analyzer