Sethy et al., 2019 - Google Patents
Detection and identification of rice leaf diseases using multiclass SVM and particle swarm optimization techniqueSethy et al., 2019
View PDF- Document ID
- 10360263382397733516
- Author
- Sethy P
- Barpanda N
- Rath A
- Publication year
- Publication venue
- International Journal of Innovative Technology and Exploring Engineering (IJITEE)
External Links
Snippet
In India the economic, political and social stability depend directly as well as indirectly on the annual production of rice. The income of hundreds of millions of people depends only on rice production and nothing else. However, as per the report of International Rice Research …
- 201000010099 disease 0 title abstract description 109
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
- G06K9/6269—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches based on the distance between the decision surface and training patterns lying on the boundary of the class cluster, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6256—Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6228—Selecting the most significant subset of features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00127—Acquiring and recognising microscopic objects, e.g. biological cells and cellular parts
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kunduracioglu et al. | Advancements in deep learning for accurate classification of grape leaves and diagnosis of grape diseases | |
| Sethy et al. | Detection and identification of rice leaf diseases using multiclass SVM and particle swarm optimization technique | |
| Haridasan et al. | Deep learning system for paddy plant disease detection and classification | |
| Tabbakh et al. | A deep features extraction model based on the transfer learning model and vision transformer “tlmvit” for plant disease classification | |
| Arivazhagan et al. | Mango leaf diseases identification using convolutional neural network | |
| Jadhav | Convolutional neural networks for leaf image-based plant disease classification | |
| Hasan et al. | Rice disease identification and classification by integrating support vector machine with deep convolutional neural network | |
| Singh et al. | Deep learning based automated detection of diseases from Apple leaf images. | |
| Kamath et al. | Classification of paddy crop and weeds using semantic segmentation | |
| Deshapande et al. | Fungal disease detection in maize leaves using haar wavelet features | |
| Dubey et al. | An efficient adaptive feature selection with deep learning model-based paddy plant leaf disease classification | |
| Kamath et al. | Crop and weed discrimination using Laws’ texture masks | |
| Sabri et al. | Nutrient deficiency detection in maize (Zea mays L.) leaves using image processing | |
| Sharma et al. | Improving rice disease diagnosis using ensemble transfer learning techniques | |
| Nga et al. | Combining binary particle swarm optimization with support vector machine for enhancing rice varieties classification accuracy | |
| Rangarajan et al. | Crop identification and disease classification using traditional machine learning and deep learning approaches | |
| Abisha et al. | Brinjal leaf diseases detection based on discrete Shearlet transform and Deep Convolutional Neural Network | |
| Wakhare et al. | Using image processing and deep learning techniques detect and identify pomegranate leaf diseases | |
| Selvakumar et al. | Automated mango leaf infection classification using weighted and deep features with optimized recurrent neural network concept | |
| Sharmila et al. | Weighted Mask Recurrent-Convolutional Neural Network based Plant Disease Detection using Leaf Images | |
| Jadhav et al. | Comprehensive review on machine learning for plant disease identification and classification with image processing | |
| David et al. | Betel leaf diseases classification using machine learning algorithm: A feasible approach | |
| Aggarwal et al. | An automation perception for cotton crop disease detection using machine learning | |
| Poornima et al. | Hybrid Convolutional Neural Network for Plant Diseases Prediction. | |
| Faisal et al. | A customized convolutional neural network-based approach for weeds identification in cotton crops |