[go: up one dir, main page]

Emsia et al., 2016 - Google Patents

Economic growth prediction using optimized support vector machines

Emsia et al., 2016

Document ID
10002922262067734235
Author
Emsia E
Coskuner C
Publication year
Publication venue
Computational Economics

External Links

Snippet

The main objective of this research is to propose a new hybrid model called genetic algorithms–support vector regression (GA–SVR). The proposed model consists of three stages. In the first stage, after lag selection, the most efficient features are selected using …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/04Architectures, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
    • G06Q10/063Operations research or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation, e.g. linear programming, "travelling salesman problem" or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints

Similar Documents

Publication Publication Date Title
Stamoulis et al. Single-path nas: Designing hardware-efficient convnets in less than 4 hours
Wen et al. Neural predictor for neural architecture search
Jaiswal et al. Software reliability prediction using machine learning techniques
Emsia et al. Economic growth prediction using optimized support vector machines
Wu et al. A multiobjective optimization-based sparse extreme learning machine algorithm
Belhaj Salah et al. A greenhouse modeling and control using deep neural networks
Liu et al. Non-stationary multivariate time series prediction with selective recurrent neural networks
Neri Quantitative Estimation of Market Sentiment: a discussion of two alternatives
CN109102698B (en) Prediction method of short-term traffic flow in road network based on integrated LSSVR model
Kotenko et al. Determining the parameters of the mathematical model of the process of searching for harmful information
Liu et al. Robust speed prediction of high-speed trains based on improved echo state networks
Bisong Training a Neural Network
Zhang et al. Flow prediction via adaptive dynamic graph with spatio-temporal correlations
Maria Tronci et al. Physics-Informed Machine Learning Part I: Different Strategies to Incorporate Physics into Engineering Problems
Verma et al. Unleashing the power of deep neural networks: An interactive exploration of static and dynamic architectures
Li et al. [Retracted] Deep Intelligence‐Driven Efficient Forecasting for the Agriculture Economy of Computational Social Systems
Ouyang et al. Interpretable Spatial-Temporal Attention Graph Convolution Network for Service Part Hierarchical Demand Forecast
Chen et al. Correlation Adaptive Dynamic Graph Convolutional Networks for Traffic Flow Prediction
Miskony et al. A randomized algorithm for prediction interval using RVFL networks ensemble
Kacprzyk et al. Optimization Approach to Forecasting Satellite Meteorological Data for Ecology and Energy
Moscoso-López et al. Ro-Ro freight forecasting based on an ANN-SVR hybrid approach. Case of the Strait of Gibraltar
Sun et al. End-to-End Performance Predictors
Srinadhraju et al. Optimization of Software Cost Estimation Model Based on Present Past Future Algorithm
Eterno Differentiable neural architecture search algorithms for tinyml benchmarks
Rodríguez Jorge et al. Prediction of highly non-stationary time series using higher-order neural units