Kim et al., 2017 - Google Patents
Egg-shell structured LiCoO 2 by Cu 2+ substitution to Li+ sites via facile stirring in an aqueous copper (ii) nitrate solutionKim et al., 2017
- Document ID
- 906613631162803931
- Author
- Kim J
- Kang H
- Go N
- Jeong S
- Yim T
- Jo Y
- Lee K
- Mun J
- Publication year
- Publication venue
- Journal of Materials Chemistry A
External Links
Snippet
For practical, high-energy lithium ion batteries, we introduce an egg-shell structured LiCoO2, enabling a credible performance with a high cut-off potential of 4.4 V, simply prepared by only stirring in 0.5 mM Cu (NO3) 2 aqueous solution at room temperature without costly heat …
- 210000003278 Egg Shell 0 title abstract description 21
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/5825—Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kim et al. | Egg-shell structured LiCoO 2 by Cu 2+ substitution to Li+ sites via facile stirring in an aqueous copper (ii) nitrate solution | |
| Hong et al. | Revealing the correlation between structural evolution and Li+ diffusion kinetics of nickel-rich cathode materials in Li-ion batteries | |
| Xu et al. | Progressive concentration gradient nickel-rich oxide cathode material for high-energy and long-life lithium-ion batteries | |
| Li et al. | Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi 0.8 Co 0.1 Mn 0.1 O 2 | |
| Li et al. | The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries | |
| US11018338B2 (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
| Zheng et al. | Enhanced Li+ ion transport in LiNi 0.5 Mn 1.5 O 4 through control of site disorder | |
| Zhang et al. | Improved electrochemical performance of LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials via incorporation of rubidium cations into the original Li sites | |
| Wang et al. | Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1. 2Ni0. 13Co0. 13Mn0. 54O2 as cathode material for Li-ion batteries | |
| Lim et al. | Enhanced elevated-temperature performance of Li (Ni0. 8Co0. 15Al0. 05) O2 electrodes coated with Li2O-2B2O3 glass | |
| Wu et al. | Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials? | |
| KR101670327B1 (en) | Composite cathode materials with controlled irreversible capacity loss for lithium ion batteries | |
| US10439212B2 (en) | Aluminum borate coated lithium ion cathode materials | |
| Zhu et al. | Nd2O3 encapsulation-assisted surface passivation of Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 active material and its electrochemical performance | |
| Li et al. | Structure and electrochemical performance modulation of a LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material by anion and cation co-doping for lithium ion batteries | |
| US20130040201A1 (en) | High capacity layered oxide cathods with enhanced rate capability | |
| Zhang et al. | Surface engineering of LiCoO2 by a multifunctional nanoshell for stable 4.6 V electrochemical performance | |
| Xu et al. | Effects of Fe 2+ ion doping on LiMnPO 4 nanomaterial for lithium ion batteries | |
| Wang et al. | A homogeneous intergrown material of LiMn 2 O 4 and LiNi 0.5 Mn 1.5 O 4 as a cathode material for lithium-ion batteries | |
| Xie et al. | LaPO 4-coated Li 1.2 Mn 0.56 Ni 0.16 Co 0.08 O 2 as a cathode material with enhanced coulombic efficiency and rate capability for lithium ion batteries | |
| Hwang et al. | Reinforcing electrochemical performance of Ni‐rich NCM cathode co‐modified by mg‐doping and Li3PO4‐coating | |
| Akhilash et al. | A comparative study of aqueous-and non-aqueous-processed Li-rich Li 1.5 Ni 0.25 Mn 0.75 O 2.5 cathodes for advanced lithium-ion cells | |
| Lee et al. | Optimized 4‐V Spinel Cathode Material with High Energy Density for Li‐Ion Cells Operating at 60 C | |
| She et al. | Limiting cobalt fraction in lithium rich cathode materials for stable and fast activation | |
| Lan et al. | P2-type Fe and Mn-based Na0. 67Ni0. 15Fe0. 35Mn0. 3Ti0. 2O2 as cathode material with high energy density and structural stability for sodium-ion batteries |