Niewola, 2020 - Google Patents
Mobile robot 6-d localization using 3-d Gaussian mixture maps in GPS-denied environmentsNiewola, 2020
- Document ID
- 8707053024835436109
- Author
- Niewola A
- Publication year
- Publication venue
- IEEE Intelligent Systems
External Links
Snippet
The mobile robot six-dimensional (6-D) localization process in GPS-denied scenarios, eg, in a cave or a mine, is a challenging problem. This article presents the modification of a well- known literature method using Gaussian mixture maps to determine the robot pose in rough …
- 230000004807 localization 0 title abstract description 68
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/10—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/023—Combination of lidar systems, with systems other than lidar, radar or sonar, e.g. with direction finder
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/26—Navigation; Navigational instruments not provided for in preceding groups specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in preceding groups specially adapted for navigation in a road network with correlation of data from several navigational instruments
- G01C21/30—Map- or contour-matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
- G01C15/002—Active optical surveying means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/94—Radar or analogous systems specially adapted for specific applications for terrain-avoidance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C11/00—Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Alsadik et al. | The simultaneous localization and mapping (SLAM): An overview | |
| Wen et al. | 3D LiDAR aided GNSS NLOS mitigation in urban canyons | |
| Montemerlo et al. | Large-scale robotic 3-d mapping of urban structures | |
| US6442476B1 (en) | Method of tracking and sensing position of objects | |
| US20230251097A1 (en) | Efficient map matching method for autonomous driving and apparatus thereof | |
| JPWO2007069726A1 (en) | Self-position identification method and apparatus and three-dimensional shape measurement method and apparatus | |
| Belter et al. | Estimating terrain elevation maps from sparse and uncertain multi-sensor data | |
| Javanmardi et al. | Autonomous vehicle self-localization based on multilayer 2D vector map and multi-channel LiDAR | |
| JP2019504418A (en) | Method and system for determining the position of a moving object | |
| Chung et al. | Development of LiDAR simulator for backpack-mounted mobile indoor mapping system | |
| JP5814620B2 (en) | POSITION CORRECTION DATA GENERATION DEVICE, POSITION LOCATION DEVICE, POSITION CORRECTION DATA GENERATION DEVICE POSITION CORRECTION DATA GENERATION METHOD, POSITION POSITION DEVICE POSITION POSITIONING METHOD, POSITION CORRECTION DATA GENERATION PROGRAM, AND POSITION POSITION PROGRAM | |
| Wen | 3D LiDAR aided GNSS and its tightly coupled integration with INS via factor graph optimization | |
| Niewola | Mobile robot 6-d localization using 3-d Gaussian mixture maps in GPS-denied environments | |
| Srinara et al. | Performance analysis of 3D NDT scan matching for autonomous vehicles using INS/GNSS/3D LiDAR-SLAM integration scheme | |
| RU2515469C1 (en) | Method of aircraft navigation | |
| Lee et al. | Three-dimensional iterative closest point-based outdoor SLAM using terrain classification | |
| Bikmaev et al. | Improving the accuracy of supporting mobile objects with the use of the algorithm of complex processing of signals with a monocular camera and LiDAR | |
| Bassier et al. | Evaluation of data acquisition techniques and workflows for Scan to BIM | |
| Nocerino et al. | Introduction to mobile mapping with portable systems | |
| Briskin et al. | Estimating pose and motion using bundle adjustment and digital elevation model constraints | |
| Handa et al. | Navigation based on metric route information in places where the mobile robot visits for the first time | |
| Dupuis et al. | TOWARDS AUTONOMOUS LONG-RANGE NAVIGATION ‘ISAIRAS 2005 CONFERENCE’, MUNICH, 5-8 SEPTEMBER 2005 | |
| RU2385468C1 (en) | Method of navigating moving objects | |
| Fairfield et al. | Evidence grid-based methods for 3D map matching | |
| Oh et al. | Fast and Robust 6-DoF LiDAR-Based Localization of an Autonomous Vehicle Against Sensor Inaccuracy |