[go: up one dir, main page]

Brox et al., 2008 - Google Patents

A motion and edge adaptive interlaced-to-progressive conversion using fuzzy logic-based systems

Brox et al., 2008

View PDF
Document ID
8444033855262725240
Author
Brox P
Baturone I
Sánchez-Solano S
Publication year

External Links

Snippet

This paper presents an algorithm for video de-interlacing. The approach uses three fuzzy logic-based systems to adapt the interpolation strategy to the presence of motion and edges. Furthermore, the algorithm is able to deal with any kind of TV material independently of the …
Continue reading at digital.csic.es (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0117Conversion of standards involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal
    • H04N7/012Conversion between an interlaced and a progressive signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0127Conversion of standards involving analogue television standards or digital television standards processed at pixel level by changing the field or frame frequency of the incoming video signal, e.g. frame rate converter
    • H04N7/0132Conversion of standards involving analogue television standards or digital television standards processed at pixel level by changing the field or frame frequency of the incoming video signal, e.g. frame rate converter the field or frame frequency of the incoming video signal being multiplied by a positive integer, e.g. for flicker reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/144Movement detection
    • H04N5/145Movement estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0112Conversion of standards involving analogue television standards or digital television standards processed at pixel level one of the standards corresponding to a cinematograph film standard
    • H04N7/0115Conversion of standards involving analogue television standards or digital television standards processed at pixel level one of the standards corresponding to a cinematograph film standard with details on the detection of a particular field or frame pattern in the incoming video signal, e.g. 3:2 pull-down pattern
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0135Conversion of standards involving analogue television standards or digital television standards processed at pixel level involving interpolation processes
    • H04N7/0137Conversion of standards involving analogue television standards or digital television standards processed at pixel level involving interpolation processes dependent on presence/absence of motion, e.g. of motion zones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0135Conversion of standards involving analogue television standards or digital television standards processed at pixel level involving interpolation processes
    • H04N7/014Conversion of standards involving analogue television standards or digital television standards processed at pixel level involving interpolation processes involving the use of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/553Motion estimation dealing with occlusions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0125Conversion of standards involving analogue television standards or digital television standards processed at pixel level one of the standards being a high definition standard
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré, halo, even if the automatic gain control is involved
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • H04N5/205Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic
    • H04N5/208Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic for compensating for attenuation of high frequency components, e.g. crispening, aperture distortion correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/142Edging; Contouring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/12Systems in which the television signal is transmitted via one channel or a plurality of parallel channels, the bandwidth of each channel being less than the bandwidth of the television signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/015High-definition television systems
    • H04N7/0152High-definition television systems using spatial or temporal subsampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/0003Stereoscopic image signal coding, multiplexing, processing, recording or transmission

Similar Documents

Publication Publication Date Title
De Haan et al. Deinterlacing-an overview
US6940557B2 (en) Adaptive interlace-to-progressive scan conversion algorithm
EP1223748B1 (en) Motion detection in an interlaced video signal
Bellers et al. De-interlacing: A key technology for scan rate conversion
US6118488A (en) Method and apparatus for adaptive edge-based scan line interpolation using 1-D pixel array motion detection
US6822691B1 (en) Method of detecting motion in an interlaced video sequence utilizing region by region motion information and apparatus for motion detection
US7280155B2 (en) Method and system for converting interlaced formatted video to progressive scan video
EP1158792A2 (en) Filter for deinterlacing a video signal
EP1938590A2 (en) Method and apparatus for spatio-temporal deinterlacing aided by motion compensation for field-based video
Chen et al. Efficient de-interlacing technique by inter-field information
WO2008152951A1 (en) Method of and apparatus for frame rate conversion
US20180205908A1 (en) Motion adaptive de-interlacing and advanced film mode detection
Kwon et al. A motion-adaptive de-interlacing method
US7443448B2 (en) Apparatus to suppress artifacts of an image signal and method thereof
Juhola et al. Scan rate conversions using weighted median filtering
Lin et al. Motion adaptive de-interlacing by horizontal motion detection and enhanced ela processing
Lee et al. A motion-adaptive deinterlacer via hybrid motion detection and edge-pattern recognition
Brox et al. A motion and edge adaptive interlaced-to-progressive conversion using fuzzy logic-based systems
Lee et al. Video format conversions between HDTV systems
KR960012490B1 (en) High definition video format conversion device and method
Choi et al. Neural network deinterlacing using multiple fields and field-MSEs
Chang et al. Motion compensated de-interlacing with adaptive global motion estimation and compensation
Brox et al. A fuzzy motion adaptive de-interlacing algorithm capable of detecting field repetition patterns
JP3389984B2 (en) Progressive scan conversion device and method
KR101144435B1 (en) Methods of edge-based deinterlacing using weight and image processing devices using the same