Chiang et al., 1997 - Google Patents
A self-learning fuzzy logic controller using genetic algorithms with reinforcementsChiang et al., 1997
View PDF- Document ID
- 8357766869514797636
- Author
- Chiang C
- Chung H
- Lin J
- Publication year
- Publication venue
- IEEE Transactions on Fuzzy Systems
External Links
Snippet
This paper presents a new method for learning a fuzzy logic controller automatically. A reinforcement learning technique is applied to a multilayer neural network model of a fuzzy logic controller. The proposed self-learning fuzzy logic control that uses the genetic …
- 230000002787 reinforcement 0 title abstract description 39
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
- G06N3/086—Learning methods using evolutionary programming, e.g. genetic algorithms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
- G06N3/0454—Architectures, e.g. interconnection topology using a combination of multiple neural nets
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
- G06N3/0472—Architectures, e.g. interconnection topology using probabilistic elements, e.g. p-rams, stochastic processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/12—Computer systems based on biological models using genetic models
- G06N3/126—Genetic algorithms, i.e. information processing using digital simulations of the genetic system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
- G06N5/043—Distributed expert systems, blackboards
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
- G06N5/045—Explanation of inference steps
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/027—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/02—Computer systems based on specific mathematical models using fuzzy logic
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/0275—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using fuzzy logic only
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Chiang et al. | A self-learning fuzzy logic controller using genetic algorithms with reinforcements | |
| Lin et al. | Reinforcement learning for an ART-based fuzzy adaptive learning control network | |
| Lin et al. | Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems | |
| Anderson | Strategy learning with multilayer connectionist representations | |
| Lin et al. | A neural fuzzy system with linguistic teaching signals | |
| US5579439A (en) | Fuzzy logic design generator using a neural network to generate fuzzy logic rules and membership functions for use in intelligent systems | |
| Rajasekaran et al. | Neural networks, fuzzy logic and genetic algorithm: synthesis and applications (with cd) | |
| Jamshidi | Tools for intelligent control: fuzzy controllers, neural networks and genetic algorithms | |
| Rajasekaran et al. | Neural networks, fuzzy systems and evolutionary algorithms: Synthesis and applications | |
| Karr | Design of a cart-pole balancing fuzzy logic controller using a genetic algorithm | |
| Lin et al. | Reinforcement hybrid evolutionary learning for recurrent wavelet-based neurofuzzy systems | |
| Chen et al. | New approach to intelligent control systems with self-exploring process | |
| Kandadai et al. | A knowledge-base generating hierarchical fuzzy-neural controller | |
| Chung et al. | A self‐learning and tuning fuzzy logic controller based on genetic algorithms and reinforcements | |
| Ikemoto et al. | Continuous deep Q-learning with a simulator for stabilization of uncertain discrete-time systems | |
| Su et al. | A new approach to fuzzy classifier systems and its application in self-generating neuro-fuzzy systems | |
| Fukuda et al. | Hierarchical control system in intelligent robotics and mechatronics | |
| Dadios et al. | Application of neural networks to the flexible pole-cart balancing problem | |
| Lin et al. | GA-based reinforcement learning for neural networks | |
| Figueiredo et al. | A fuzzy neural network: Structure and learning | |
| Nürnberger | Approximation of dynamic systems using recurrent neuro-fuzzy techniques | |
| Sajja | Type-2 fuzzy user interface for artificial neural network based decision support system for course selection | |
| Berenji et al. | Approximate reasoning-based learning and control for proximity operations and docking in space | |
| Steib et al. | Expert systems for guiding backpropagation training of layered perceptrons | |
| Padman | Choosing solvers in decision support systems: A neural network application in resource-constrained project scheduling |