[go: up one dir, main page]

Cai et al., 2022 - Google Patents

Study on solution and aging heat treatment of a super high strength cast Mg-7.8 Gd-2.7 Y-2.0 Ag-0.4 Zr alloy

Cai et al., 2022

View PDF
Document ID
775877109893661093
Author
Cai H
Zhao Z
Wang Q
Zhang N
Lei C
Publication year
Publication venue
Materials Science and Engineering: A

External Links

Snippet

Abstract Mg-7.8 Gd-2.7 Y-2.0 Ag-0.4 Zr (wt.%) alloy was prepared by traditional metal mold gravity casting, and then was solutionized and aged. The solution and aging processing were optimized, the microstructure evolution during solution and aging of the alloys was …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making alloys
    • C22C1/002Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making alloys
    • C22C1/02Making alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon high-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides whether added as such or formed in situ carbon or graphite as the main non-metallic constituent

Similar Documents

Publication Publication Date Title
Cai et al. Study on solution and aging heat treatment of a super high strength cast Mg-7.8 Gd-2.7 Y-2.0 Ag-0.4 Zr alloy
Deng et al. Microstructure evolution and mechanical properties of a high-strength Mg-10Gd-3Y–1Zn-0.4 Zr alloy fabricated by laser powder bed fusion
Jiang et al. Effect of Zn content and Sc, Zr addition on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys
Guan et al. Effects of 1.5 wt% samarium (Sm) addition on microstructures and tensile properties of a Mg− 6.0 Zn− 0.5 Zr alloy
Guo et al. Achieving high-strength magnesium matrix nanocomposite through synergistical effect of external hybrid (SiC+ TiC) nanoparticles and dynamic precipitated phase
Ji et al. Influence of Er addition on microstructure and mechanical properties of as-cast Mg-10Li-5Zn alloy
Xu et al. Improving strength and elongation combination of Cu–9Ni–6Sn-(0.2 Nb) alloys by pre-annealing and aging treatment
Hu et al. Strong and ductile Mg-0.4 Al alloy with minor Mn addition achieved by conventional extrusion
Rong et al. A high pressure die cast magnesium alloy with superior thermal conductivity and high strength
Wu et al. Improved strength in wrought Mg–Y–Ni alloys by adjusting the block-shaped LPSO phase and plate-shaped γ′ phase
Yang et al. The response of mechanical property to the microstructure variation of an Al–Mg alloy by adding tin element
Poulia et al. Phase segregation discussion in a Hf25Zr30Ti20Nb15V10 high entropy alloy: The effect of the high melting point element
Zhao et al. Influence of Ce content on the microstructures and tensile properties of Mg-1Gd-0.5 Zn alloys
Wu et al. Microstructure evolution and mechanical behavior of α/β alternative Mg–Li alloy composite sheets with different initial thickness ratios prepared by accumulative roll bonding
Liu et al. Effects of hot rolling on microstructure, macrotexture and mechanical properties of pre-extruded AZ31/SiC nanocomposite sheets
Cai et al. Effects of magnetic field on the microstructure and mechanical property of Mg-Al-Gd alloys
Li et al. Microstructure evolution, mechanical properties and creep mechanisms of Mg-12Gd-1MM-0.6 Zr (wt%) magnesium alloy
Zhang et al. Precipitated phase characteristics and fracture behaviour of cast Al–Cu–Mn alloy
Zhang et al. Microstructures and mechanical properties of Zr–Al binary alloys processed by hot-rolling
Ma et al. Evolution of microstructures and mechanical properties of Mg-1.4 Gd-1.2 Y-0.4 Zn-0.5 Al sheets with different extrusion ratios
Chen et al. Effect of microalloyed Ca on microstructure and mechanical properties of Mg–6Zn–1Mn–4Sn (wt.%) alloy
Zhang et al. Nd microalloying significantly enhances precipitation strengthening of Mg-Gd-Y-Zn-Zr alloy
Li et al. Effect of Ca addition on microstructure and mechanical properties of Mg–3.8 Al–1.1 Sn alloys
Ghorbani et al. Tailored mechanical properties and corrosion resistance of as-cast Mg-7Zn-0.5 Zr-0.5 Ca alloy via multi-step homogenization treatment
Dong et al. Intelligent development of high strength and ductile heat treatment-free Al-Si-Mg alloys for integrated die casting through the machine learning of experimental big data