[go: up one dir, main page]

Hou et al., 2021 - Google Patents

Electrochemical properties of La 0.5 Sr 0.5 Fe 0.95 Mo 0.05 O 3− δ as cathode materials for IT-SOEC

Hou et al., 2021

View HTML
Document ID
7730286511167699684
Author
Hou Y
Wang Y
Wang L
Zhang Q
Chou K
Publication year
Publication venue
RSC advances

External Links

Snippet

Solid oxide electrolysis cells (SOECs) are a new type of high-efficiency energy conversion device that can electrolyze CO2 efficiently and convert electricity into chemical energy. However, the lack of efficient and stable cathodes hinders the practical application of CO2 …
Continue reading at pubs.rsc.org (HTML) (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • Y02E60/52Fuel cells characterised by type or design
    • Y02E60/521Proton Exchange Membrane Fuel Cells [PEMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • Y02E60/52Fuel cells characterised by type or design
    • Y02E60/525Solid Oxide Fuel Cells [SOFC]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues

Similar Documents

Publication Publication Date Title
Hu et al. Alkaline-earth elements (Ca, Sr and Ba) doped LaFeO3-δ cathodes for CO2 electroreduction
Chung et al. In situ preparation of a La 1.2 Sr 0.8 Mn 0.4 Fe 0.6 O 4 Ruddlesden–Popper phase with exsolved Fe nanoparticles as an anode for SOFCs
Wang et al. Highly promoted performance of triple-conducting cathode for YSZ-based SOFC via fluorine anion doping
Yao et al. Copper doped SrFe0. 9-xCuxW0. 1O3-δ (x= 0–0.3) perovskites as cathode materials for IT-SOFCs
Hou et al. Electrochemical properties of La 0.5 Sr 0.5 Fe 0.95 Mo 0.05 O 3− δ as cathode materials for IT-SOEC
CN110581283B (en) A kind of bismuth-doped solid oxide battery fuel electrode material and its preparation method and application
Zhang et al. Antimony doping to greatly enhance the electrocatalytic performance of Sr 2 Fe 1.5 Mo 0.5 O 6− δ perovskite as a ceramic anode for solid oxide fuel cells
Choi et al. Highly efficient CO2 electrolysis to CO on Ruddlesden–Popper perovskite oxide with in situ exsolved Fe nanoparticles
Yang et al. Improving stability and electrochemical performance of Ba0. 5Sr0. 5Co0. 2Fe0. 8O3-δ electrode for symmetrical solid oxide fuel cells by Mo doping
He et al. Ti-doped molybdenum-based perovskites as anodes for solid oxide fuel cells
Hou et al. High-performance La0· 3Sr0· 7Fe0· 9Ti0· 1O3-δ as fuel electrode for directly electrolyzing CO2 in solid oxide electrolysis cells
Li et al. Tailoring tantalum doping into a perovskite ferrite to obtain a highly active and stable anode for solid oxide fuel cells
Gao et al. Voltage-driven reduction method to optimize in-situ exsolution of Fe nanoparticles at Sr2Fe1. 5+ xMo0. 5O6-δ interface
Xu et al. Oxide composite of La0. 3Sr0. 7Ti0. 3Fe0. 7O3-δ and CeO2 as an active fuel electrode for reversible solid oxide cells
Kulkarni et al. Electrochemical performance of direct carbon fuel cells with titanate anodes
Qi et al. Single-phase nickel-doped ceria cathode with in situ grown nickel nanocatalyst for direct high-temperature carbon dioxide electrolysis
Li et al. A novel Ba 0.95 La 0.05 Fe 0.9 Nb 0.1 O 3− δ ceramic electrode for symmetrical solid oxide fuel cells
Li et al. Fabrication and performance investigation of high entropy perovskite (Sr0. 2Ba0. 2Bi0. 2La0. 2Pr0. 2) FeO3 IT-SOFC cathode material
Wang et al. Layered perovskite PrBa0. 5Sr0. 5CoCuO5+ δ as a cathode for intermediate-temperature solid oxide fuel cells
CN108927165A (en) A kind of perovskite structure electrode catalytic materials and its preparation method and application of lanthanum/nickel doping strontium iron molybdenum oxygen
Pei et al. Co and Hf co-doped BaFeO3 cathode with obviously enhanced catalytic activity and CO2 tolerance for solid oxide fuel cell
Zhou et al. Basic properties of low thermal expansion coefficient (Y0. 5Ca0. 5) 1− xInxBaCo3ZnO7+ δ (x= 0, 0.1, 0.2, 0.3) solid solutions for solid oxide fuel cell cathode materials
Park et al. High-performance Ruddlesden–Popper perovskite oxide with in situ exsolved nanoparticles for direct CO 2 electrolysis
Yang et al. Low-valence Cu+-tailoring La0. 5Sr1. 5MnO4 as a novel single-phase cathode for proton-conducting solid oxide fuel cells
Fan et al. Barium‐doped Sr2Fe1. 5Mo0. 5O6‐δ perovskite anode materials for protonic ceramic fuel cells for ethane conversion