Panteleenko, 2002 - Google Patents
Instantaneous offloading of web server loadPanteleenko, 2002
- Document ID
- 7703235567816129264
- Author
- Panteleenko V
- Publication year
External Links
Snippet
Traffic to a web server is unpredictable and very peaky. Such peaks can be up to ten times the average load. To avoid losing or alienating clients, web servers are overbuilt to handle the peak load. Consequently, there are huge investments in local infrastructure at web sites …
- 238000000034 method 0 description 108
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/30—Definitions, standards or architectural aspects of layered protocol stacks
- H04L69/32—High level architectural aspects of 7-layer open systems interconnection [OSI] type protocol stacks
- H04L69/322—Aspects of intra-layer communication protocols among peer entities or protocol data unit [PDU] definitions
- H04L69/329—Aspects of intra-layer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer, i.e. layer seven
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L29/00—Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00 contains provisionally no documents
- H04L29/02—Communication control; Communication processing contains provisionally no documents
- H04L29/06—Communication control; Communication processing contains provisionally no documents characterised by a protocol
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/16—Transmission control protocol/internet protocol [TCP/IP] or user datagram protocol [UDP]
- H04L69/161—Implementation details of TCP/IP or UDP/IP stack architecture; Specification of modified or new header fields
- H04L69/162—Implementation details of TCP/IP or UDP/IP stack architecture; Specification of modified or new header fields involving adaptations of sockets based mechanisms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogramme communication; Intertask communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/19—Flow control or congestion control at layers above network layer
- H04L47/193—Flow control or congestion control at layers above network layer at transport layer, e.g. TCP related
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/28—Network-specific arrangements or communication protocols supporting networked applications for the provision of proxy services, e.g. intermediate processing or storage in the network
- H04L67/2842—Network-specific arrangements or communication protocols supporting networked applications for the provision of proxy services, e.g. intermediate processing or storage in the network for storing data temporarily at an intermediate stage, e.g. caching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/28—Network-specific arrangements or communication protocols supporting networked applications for the provision of proxy services, e.g. intermediate processing or storage in the network
- H04L67/2866—Architectural aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/28—Network-specific arrangements or communication protocols supporting networked applications for the provision of proxy services, e.g. intermediate processing or storage in the network
- H04L67/2819—Enhancement of application control based on intercepted application data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/16—Transmission control protocol/internet protocol [TCP/IP] or user datagram protocol [UDP]
- H04L69/163—Adaptation of TCP data exchange control procedures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/12—Protocol engines, e.g. VLSIs or transputers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/32—Network-specific arrangements or communication protocols supporting networked applications for scheduling or organising the servicing of application requests, e.g. requests for application data transmissions involving the analysis and optimisation of the required network resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/42—Protocols for client-server architectures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/90—Queuing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6535518B1 (en) | System for bypassing a server to achieve higher throughput between data network and data storage system | |
| Kaufmann et al. | High performance packet processing with flexnic | |
| Jeong et al. | {mTCP}: a highly scalable user-level {TCP} stack for multicore systems | |
| Prylli et al. | BIP: a new protocol designed for high performance networking on myrinet | |
| US8417789B1 (en) | Distributed adaptive network memory engine | |
| Dubnicki et al. | Vmmc-2: Efficient support for reliable, connection-oriented communication | |
| Takahashi et al. | PM2: High performance communication middleware for heterogeneous network environments | |
| US20020161848A1 (en) | Systems and methods for facilitating memory access in information management environments | |
| EP2240852B1 (en) | Scalable sockets | |
| Carrera et al. | User-level communication in cluster-based servers | |
| US20120226307A1 (en) | Devices and methods for reshaping cartilage structures | |
| Kim et al. | Increasing web server throughput with network interface data caching | |
| Hu et al. | Adaptive fast path architecture | |
| Andreolini et al. | Scalability of content-aware server switches for cluster-based Web information systems | |
| Mansley | Engineering a user-level TCP for the CLAN network | |
| Rosu et al. | Kernel Support for Faster Web Proxies. | |
| Panteleenko | Instantaneous offloading of web server load | |
| Kim et al. | Network interface data caching | |
| Salehi et al. | The effectiveness of affinity-based scheduling in multiprocessor networking | |
| Carrera et al. | Press: A clustered server based on user-level communication | |
| He et al. | A study of bare PC web server performance for workloads with dynamic and static content | |
| Xue et al. | Network interface architecture for remote indirect memory access (rima) in datacenters | |
| Wang et al. | Operating System Support for High-Performance Networking, A Survey | |
| Zhao et al. | Design and implementation of a content-aware switch using a network processor | |
| Kay | Path IDs: a mechanism for reducing network software latency |