[go: up one dir, main page]

Ye et al., 2024 - Google Patents

In situ reconstruction of proton conductive electrolyte from self-assembled perovskite oxide-based nanocomposite for low temperature ceramic fuel cells

Ye et al., 2024

Document ID
7687099310247632575
Author
Ye W
Hu Q
Zhao H
Jing Y
Singh M
Fan L
Publication year
Publication venue
Chemical Engineering Journal

External Links

Snippet

In the development of low temperature solid oxide fuel cells (LT-SOFCs), also called ceramic fuel cells, the lack of highly conductive and the high manufacturing cost of dense electrolyte materials severely delay their wide development. In this work, we depart from the classic …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • Y02E60/52Fuel cells characterised by type or design
    • Y02E60/521Proton Exchange Membrane Fuel Cells [PEMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • Y02E60/52Fuel cells characterised by type or design
    • Y02E60/525Solid Oxide Fuel Cells [SOFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof

Similar Documents

Publication Publication Date Title
Liu et al. One-pot derived thermodynamically quasi-stable triple conducting nanocomposite as robust bifunctional air electrode for reversible protonic ceramic cells
Yao et al. Copper doped SrFe0. 9-xCuxW0. 1O3-δ (x= 0–0.3) perovskites as cathode materials for IT-SOFCs
Li et al. Enhanced electrochemical performance of the Fe-based layered perovskite oxygen electrode for reversible solid oxide cells
Zhang et al. In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs
Zhou et al. Structural and electrochemical properties of B-site Ru-doped (La0. 8Sr0. 2) 0.9 Sc0. 2Mn0. 8O3-δ as symmetrical electrodes for reversible solid oxide cells
Ding et al. Promotion on electrochemical performance of a cation deficient SrCo0. 7Nb0. 1Fe0. 2O3− δ perovskite cathode for intermediate-temperature solid oxide fuel cells
Chen et al. Tuning La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ perovskite cathode as functional electrolytes for advanced low-temperature SOFCs
Du et al. A SmBaCo 2 O 5+ δ double perovskite with epitaxially grown Sm 0.2 Ce 0.8 O 2− δ nanoparticles as a promising cathode for solid oxide fuel cells
Yao et al. Evaluation of A-site Ba-deficient PrBa0. 5-xSr0. 5Co2O5+ δ (x= 0, 0.04 and 0.08) as cathode materials for solid oxide fuel cells
Ye et al. In situ reconstruction of proton conductive electrolyte from self-assembled perovskite oxide-based nanocomposite for low temperature ceramic fuel cells
Bello et al. Evaluation of the electrocatalytic performance of a novel nanocomposite cathode material for ceramic fuel cells
Li et al. Highly active and stable tin-doped perovskite-type oxides as cathode materials for solid oxide fuel cells
Yi et al. Highly active and stable BaCo0. 8Zr0. 1Y0. 1O3-δ cathode for intermediate temperature solid oxide fuel cells
Nie et al. Processing SCNT (SrCo0. 8Nb0. 1Ta0. 1O3-δ)-SCDC (Ce0. 8Sm0. 05Ca0. 15O2-δ) composite into semiconductor-ionic membrane fuel cell (SIMFC) to operate below 500° C
Li et al. Performance and optimization of perovskite-type La1· 4Ca0· 6CoMnO5+ δ cathode for intermediate-temperature solid oxide fuel cells
Sharif et al. Semiconductor ionic Cu doped CeO2 membrane fuel cells
Meng et al. Superionic conduction of self-assembled heterostructural LSCrF-CeO2 electrolyte for solid oxide fuel cell at 375–550° C
Qiu et al. A-site cation deficient SrTa0. 1Fe0. 9O3-δ as a bi-functional cathode for both oxygen ion-and proton-conducting solid oxide fuel cells
Zhang et al. Unraveling the promotional role of BaCO 3 in the electrode reaction kinetics of an SmBaFe 2 O 5+ δ air electrode of reversible solid oxide cells
Chen et al. Ca and Fe co-doped NdBaCo2O5+ δ double perovskites as high-performance cathodes for solid oxide fuel cells
Salman et al. Improved electrochemical performance of high-entropy La0. 8Sr0. 2FeO3-based IT-SOFC cathode
Gao et al. Enhancing chemical stability and performance in proton-conducting solid oxide fuel cells through novel composite cathode design
Bai et al. Sc-doped Co-based perovskites as IT-SOFC cathode with high oxygen reduction reaction and CO2 tolerance
Zhou et al. CO2-tolerant and cobalt-free La4Ni3-xCuxO10±δ (x= 0, 0.3, 0.5 and 0.7) cathodes for intermediate-temperature solid oxide fuel cells
Wang et al. A robust high-entropy perovskite fuel electrode for direct CO2 electrolysis on air electrode-supported solid oxide electrolysis cells