MAYURI - Google Patents
DOWNLINK COCHANNEL INTERFERENCE MITIGATION IN WIRELESS CELLULAR NETWORKSMAYURI
- Document ID
- 6884269822780303008
- Author
- MAYURI A
External Links
- 230000001413 cellular 0 title abstract description 32
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/04—Wireless resource allocation
- H04W72/08—Wireless resource allocation where an allocation plan is defined based on quality criteria
- H04W72/082—Wireless resource allocation where an allocation plan is defined based on quality criteria using the level of interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/04—Wireless resource allocation
- H04W72/08—Wireless resource allocation where an allocation plan is defined based on quality criteria
- H04W72/085—Wireless resource allocation where an allocation plan is defined based on quality criteria using measured or perceived quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W52/00—Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC [Transmission power control]
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W52/00—Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC [Transmission power control]
- H04W52/18—TPC being performed according to specific parameters
- H04W52/26—TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/12—Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
- H04W72/1205—Schedule definition, set-up or creation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/18—Negotiating wireless communication parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2621—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using frequency division multiple access [FDMA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/14—Spectrum sharing arrangements between different networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/04—Traffic adaptive resource partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/12—Fixed resource partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W74/00—Wireless channel access, e.g. scheduled or random access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W36/00—Hand-off or reselection arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8265547B2 (en) | Resource management and interference mitigation techniques for relay-based wireless netoworks | |
| Viswanathan et al. | Performance of cellular networks with relays and centralized scheduling | |
| US7356043B2 (en) | Network channel access protocol—slot scheduling | |
| DK1997334T3 (en) | Measuring supported dynamic frequency re-use in mobile telecommunications networks | |
| CN101529733A (en) | Interference management techniques for wireless networks | |
| US20250176008A1 (en) | Subscriber in a wireless communication system, base station, method for receiving data and computer program, for increasing the probability of getting through for subscribers with poor reception conditions or high qos requirements in communication systems with a high density of subscribers | |
| Schoenen et al. | MAC performance of a 3GPP-LTE multihop cellular network | |
| Jing et al. | Spectrum co-existence of IEEE 802.11 b and 802.16 a networks using reactive and proactive etiquette policies | |
| Tam et al. | Optimal multi-hop cellular architecture for wireless communications | |
| Tang et al. | Joint transmit power control and rate adaptation for wireless LANs | |
| Yeh et al. | A time space division multiple access (TSDMA) protocol for multihop wireless networks with access points | |
| Blau et al. | Decentralized utility maximization in heterogeneous multicell scenarios with interference limited and orthogonal air interfaces | |
| Zhao et al. | Fractional frequency reuse schemes and performance evaluation for OFDMA multi-hop cellular networks | |
| MAYURI | DOWNLINK COCHANNEL INTERFERENCE MITIGATION IN WIRELESS CELLULAR NETWORKS | |
| Cho | Interference-aware multi-channel assignment in multi-radio wireless mesh networks | |
| Schoenen | Multihop Extensions to Cellular Networks—the Benefit of Relaying for LTE | |
| How et al. | A MAC-layer QoS provisioning protocol for cognitive radio networks | |
| Elshafie et al. | Positional analysis of spectrum sharing between ieee 80.16 and tv band | |
| Yanmaz et al. | Handover performance of dynamic load balancing schemes in cellular networks | |
| Li et al. | Performance Analysis of Cellular System Enhanced with Two-Hop Fixed Relay Nodes | |
| Sreng et al. | Coverage Enhancement through Peer-to-Peer Relaying in Cellular Radio Networks | |
| Radunovic et al. | On Downlink Capacity of Cellular Data Networks with WLAN/WPAN Relays | |
| Kudoh et al. | Multi-hop Virtual Cellular Network | |
| How et al. | A cognitive Power-Controlled Rate-Adaptive MAC protocol to support differentiated service in wireless mesh networks | |
| Canales et al. | Performance evaluation of cross-layer routing for QoS support in mobile ad hoc networks |