[go: up one dir, main page]

Liu et al., 2022 - Google Patents

Low-rank tensor subspace decomposition with weighted group sparsity for the acceleration of non-cartesian dynamic MRI

Liu et al., 2022

Document ID
6762746168303680899
Author
Liu B
Ding Z
Zhang Y
She H
Du Y
Publication year
Publication venue
IEEE Transactions on Biomedical Engineering

External Links

Snippet

Objective: Dynamic MR imaging often requires long scan time, and acceleration of data acquisition is highly desirable in clinical applications. Methods: We proposed a Low-rank Tensor subspace decomposition with Weighted Group Sparsity (LTWGS) algorithm for non …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5611Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE
    • G01R33/5612Parallel RF transmission, i.e. RF pulse transmission using a plurality of independent transmission channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10104Positron emission tomography [PET]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/001Image restoration
    • G06T5/002Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4053Super resolution, i.e. output image resolution higher than sensor resolution
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4084Transform-based scaling, e.g. FFT domain scaling
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing

Similar Documents

Publication Publication Date Title
Schlemper et al. A deep cascade of convolutional neural networks for dynamic MR image reconstruction
Korkmaz et al. Unsupervised MRI reconstruction via zero-shot learned adversarial transformers
Wang et al. One-dimensional deep low-rank and sparse network for accelerated MRI
Lei et al. Wasserstein GANs for MR imaging: from paired to unpaired training
Song et al. Coupled dictionary learning for multi-contrast MRI reconstruction
Liu et al. Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging
US10740931B2 (en) Method for performing magnetic resonance imaging reconstruction with unsupervised deep learning
Kelkar et al. Compressible latent-space invertible networks for generative model-constrained image reconstruction
Hou et al. Truncated residual based plug-and-play ADMM algorithm for MRI reconstruction
US12106401B2 (en) Systems and methods for training machine learning algorithms for inverse problems without fully sampled reference data
Meng et al. Accelerating T2 mapping of the brain by integrating deep learning priors with low‐rank and sparse modeling
Ramzi et al. Denoising score-matching for uncertainty quantification in inverse problems
Liu et al. Low-rank tensor subspace decomposition with weighted group sparsity for the acceleration of non-cartesian dynamic MRI
Cha et al. Unpaired training of deep learning tMRA for flexible spatio-temporal resolution
Huang et al. Single-pass object-adaptive data undersampling and reconstruction for MRI
Kleineisel et al. Real‐time cardiac MRI using an undersampled spiral k‐space trajectory and a reconstruction based on a variational network
Guan et al. Subspace model-assisted deep learning for improved image reconstruction
Dou et al. MRI denoising with a non‐blind deep complex‐valued convolutional neural network
Chand et al. Multi-scale energy (muse) framework for inverse problems in imaging
Cheng et al. Model-based deep medical imaging: the roadmap of generalizing iterative reconstruction model using deep learning
Chand et al. Multi-scale energy (MuSE) plug and play framework for inverse problems
He et al. Dynamic MRI reconstruction exploiting blind compressed sensing combined transform learning regularization
Liu et al. Highly undersampling dynamic cardiac MRI based on low-rank tensor coding
Wang et al. Quantitative evaluation of temporal regularizers in compressed sensing dynamic contrast enhanced MRI of the breast
Ozturkler et al. Gleam: greedy learning for large-scale accelerated MRI reconstruction