Zhao et al., 2007 - Google Patents
Near-duplicate keyframe identification with interest point matching and pattern learningZhao et al., 2007
View PDF- Document ID
- 6550423073975766243
- Author
- Zhao W
- Ngo C
- Tan H
- Wu X
- Publication year
- Publication venue
- IEEE Transactions on Multimedia
External Links
Snippet
This paper proposes a new approach for near-duplicate keyframe (NDK) identification by matching, filtering and learning of local interest points (LIPs) with PCA-SIFT descriptors. The issues in matching reliability, filtering efficiency and learning flexibility are novelly exploited …
- 210000000088 Lip 0 abstract description 65
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30244—Information retrieval; Database structures therefor; File system structures therefor in image databases
- G06F17/30247—Information retrieval; Database structures therefor; File system structures therefor in image databases based on features automatically derived from the image data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30781—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F17/30784—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
- G06F17/30799—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre using low-level visual features of the video content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30017—Multimedia data retrieval; Retrieval of more than one type of audiovisual media
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/00711—Recognising video content, e.g. extracting audiovisual features from movies, extracting representative key-frames, discriminating news vs. sport content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/20—Image acquisition
- G06K9/32—Aligning or centering of the image pick-up or image-field
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4671—Extracting features based on salient regional features, e.g. Scale Invariant Feature Transform [SIFT] keypoints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00288—Classification, e.g. identification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Zhao et al. | Near-duplicate keyframe identification with interest point matching and pattern learning | |
| Chou et al. | Pattern-based near-duplicate video retrieval and localization on web-scale videos | |
| Philbin et al. | Lost in quantization: Improving particular object retrieval in large scale image databases | |
| Chum | Large-scale discovery of spatially related images | |
| US9361523B1 (en) | Video content-based retrieval | |
| Xu et al. | Video event recognition using kernel methods with multilevel temporal alignment | |
| Zhao et al. | Scale-rotation invariant pattern entropy for keypoint-based near-duplicate detection | |
| Ngo et al. | Fast tracking of near-duplicate keyframes in broadcast domain with transitivity propagation | |
| Douze et al. | INRIA-LEARs video copy detection system | |
| CN101650728A (en) | Video high-level characteristic retrieval system and realization thereof | |
| Hsiao et al. | A new approach to image copy detection based on extended feature sets | |
| Liao et al. | IR feature embedded bof indexing method for near-duplicate video retrieval | |
| Rusiñol et al. | Efficient logo retrieval through hashing shape context descriptors | |
| Chasanis et al. | Movie segmentation into scenes and chapters using locally weighted bag of visual words | |
| JP6017277B2 (en) | Program, apparatus and method for calculating similarity between contents represented by set of feature vectors | |
| Liu et al. | AT&T Research at TRECVID 2009 Content-based Copy Detection. | |
| Küçüktunç et al. | Video copy detection using multiple visual cues and MPEG-7 descriptors | |
| Hu et al. | Conditional attention for content-based image retrieval | |
| Farhangi et al. | Improvement the bag of words image representation using spatial information | |
| Hu et al. | Coherent phrase model for efficient image near-duplicate retrieval | |
| Ozkan et al. | Interesting faces: A graph-based approach for finding people in news | |
| Kordopatis-Zilos et al. | Finding near-duplicate videos in large-scale collections | |
| Kong | SIFT Feature‐Based Video Camera Boundary Detection Algorithm | |
| Battiato et al. | Bags of phrases with codebooks alignment for near duplicate image detection | |
| Poullot et al. | Scaling content-based video copy detection to very large databases |