Lopez-Jauregi et al., 2015 - Google Patents
Procedure to predict residual stress pattern in spray transfer multipass weldingLopez-Jauregi et al., 2015
- Document ID
- 6138070480059551886
- Author
- Lopez-Jauregi A
- Ulacia I
- Esnaola J
- Ugarte D
- Torca I
- Publication year
- Publication venue
- the International Journal of Advanced Manufacturing Technology
External Links
Snippet
Gas metal arc welding (GMAW) is one of the most used joining method in the industry. However, one of the main problems of this process is the generation of residual stresses which have direct impact on the fatigue life of welded components. Nevertheless, residual …
- 238000003466 welding 0 title abstract description 105
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/32—Bonding taking account of the properties of the material involved
- B23K26/322—Bonding taking account of the properties of the material involved involving coated metal parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
- B23K31/12—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
- B23K31/125—Weld quality monitoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/12—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
- B23K20/122—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2201/00—Articles made by soldering, welding or cutting by applying heat locally
- B23K2201/04—Tubular or hollow articles
- B23K2201/06—Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/24—Electric supply or control circuits therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
- B23K31/02—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2203/00—Materials to be soldered, welded or cut
- B23K2203/02—Iron or ferrous alloys
- B23K2203/04—Steel or steel alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/04—Welding for other purposes than joining, e.g. built-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K13/00—Welding by high-frequency current heating
- B23K13/04—Welding by high-frequency current heating by conduction heating
- B23K13/043—Seam welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2201/00—Articles made by soldering, welding or cutting by applying heat locally
- B23K2201/18—Sheet panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2201/00—Articles made by soldering, welding or cutting by applying heat locally
- B23K2201/20—Tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Nezamdost et al. | Investigation of temperature and residual stresses field of submerged arc welding by finite element method and experiments | |
| Joshi et al. | Characterization of material properties and heat source parameters in welding simulation of two overlapping beads on a substrate plate | |
| Chen et al. | Numerical and experimental studies on temperature and distortion patterns in butt-welded plates | |
| Su et al. | Thermal energy generation and distribution in friction stir welding of aluminum alloys | |
| Perić et al. | Numerical calculation and experimental measurement of temperatures and welding residual stresses in a thick-walled T-joint structure | |
| Santoro et al. | Infrared in-line monitoring of flaws in steel welded joints: a preliminary approach with SMAW and GMAW processes | |
| Liu et al. | Numerical modeling and experimental verification of residual stress in autogenous laser welding of high-strength steel | |
| Wang et al. | Development of a new combined heat source model for welding based on a polynomial curve fit of the experimental fusion line | |
| Lopez-Jauregi et al. | Procedure to predict residual stress pattern in spray transfer multipass welding | |
| Moradi et al. | Numerical and experimental study of geometrical dimensions on laser-TIG hybrid welding of stainless steel 1.4418 | |
| Atma Raj et al. | Determination of Distortion Developed During TIG welding of low carbon steel plate | |
| Hartel et al. | Finite element modeling for the structural analysis of Al-Cu laser beam welding | |
| Biswas et al. | Thermomechanical finite element analysis and experimental investigation of single-pass single-sided submerged arc welding of C—Mn steel plates | |
| Mahapatra et al. | Three-dimensional finite element analysis to predict the effects of shielded metal arc welding process parameters on temperature distributions and weldment zones in butt and one-sided fillet welds | |
| Alhafadhi et al. | Influence of heat input and preheating on residual stresses in pipe weld | |
| Winczek et al. | Numerical analysis of the influence of electrode inclination on temperature distribution during GMAW overlaying | |
| Wei et al. | Influence of welding groove on residual stress and distortion in T-joint weld | |
| Arsić et al. | Experimental and numerical study of temperature field during hard-facing of different carbon steels | |
| Ulacia et al. | Procedure to predict residual stress pattern in spray transfer multipass welding | |
| Nazemi et al. | A hardness study on laser cladded surfaces for a selected bead overlap conditions | |
| Lopez-Jauregi et al. | Residual Stress Pattern Prediction in Spray Transfer Multipass Welding by Means of Numerical Simulation | |
| Winczek et al. | Modelling of a temporary temperature field during arc weld surfacing of steel elements taking into account heat of the weld | |
| Javid et al. | Thermo-mechanical Analysis of the Laser Welding of Stainless Steel 304. | |
| Chand et al. | Numerical and experiment study of residual stress and strain in multi-pass GMA welding | |
| Tongov et al. | Practice oriented heat source model calibration |