Cannon, 2024 - Google Patents
Reservoir modelling: A practical guideCannon, 2024
- Document ID
- 6136414872601506367
- Author
- Cannon S
- Publication year
External Links
Snippet
The essential resource to an integrated approach to reservoir modelling by highlighting both the input of data and the modelling results Reservoir Modelling offers a comprehensive guide to the procedures and workflow for building a 3-D model. Designed to be practical, the …
- 238000000034 method 0 abstract description 82
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. analysis, for interpretation, for correction
- G01V1/30—Analysis
- G01V1/301—Analysis for determining seismic cross-sections or geostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. analysis, for interpretation, for correction
- G01V1/34—Displaying seismic recordings or visualisation of seismic data or attributes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. analysis, for interpretation, for correction
- G01V1/282—Application of seismic models, synthetic seismograms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. analysis, for interpretation, for correction
- G01V1/30—Analysis
- G01V1/306—Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/61—Analysis by combining or comparing a seismic data set with other data
- G01V2210/614—Synthetically generated data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/66—Subsurface modeling
- G01V2210/665—Subsurface modeling using geostatistical modeling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/62—Physical property of subsurface
- G01V2210/624—Reservoir parameters
- G01V2210/6248—Pore pressure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/67—Wave propagation modeling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/40—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
- G01V1/44—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
- G01V1/48—Processing data
- G01V1/50—Analysing data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/003—Seismic data acquisition in general, e.g. survey design
- G01V1/005—Seismic data acquisition in general, e.g. survey design with exploration systems emitting special signals, e.g. frequency swept signals, pulse sequences or slip sweep arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/40—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
- G01V1/42—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators in one well and receivers elsewhere or vice versa
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V99/00—Subject matter not provided for in other groups of this subclass
- G01V99/005—Geomodels or geomodelling, not related to particular measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V11/00—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Cannon | Reservoir modelling: A practical guide | |
| Ringrose et al. | Reservoir model design | |
| Slatt | Stratigraphic reservoir characterization for petroleum geologists, geophysicists, and engineers | |
| Cosentino | Integrated reservoir studies | |
| CA2543801C (en) | Reservoir model building methods | |
| Kamali et al. | 3D geostatistical modeling and uncertainty analysis in a carbonate reservoir, SW Iran | |
| Benetatos et al. | Coping with uncertainties through an automated workflow for 3D reservoir modelling of carbonate reservoirs | |
| Mehdipour et al. | The best scenario for geostatistical modeling of porosity in the Sarvak reservoir in an Iranian oil field, using electrofacies, seismic facies, and seismic attributes | |
| Jackson et al. | Rapid reservoir modeling: prototyping of reservoir models, well trajectories and development options using an intuitive, sketch-based interface | |
| Rajput et al. | Reservoir Delineation and Characterization | |
| Penna et al. | Geostatistical seismic inversion and 3D modelling of metric flow units, porosity and permeability in Brazilian presalt reservoir | |
| Fajana | 3-D static modelling of lateral heterogeneity using geostatistics and artificial neural network in reservoir characterisation of “P” field, Niger Delta | |
| Pyrcz et al. | Event-based geostatistical modeling: application to deep-water systems | |
| Ismail et al. | Seismic Data Interpretation and 3D Static Reservoir Modeling in the Temsah Area, Eastern Offshore Nile Delta, Egypt | |
| Bueno et al. | Constraining uncertainty in volumetric estimation: A case study from Namorado Field, Brazil | |
| Agi et al. | Impact of geological interpretation on reservoir 3D static model: Workflow, methodology approach and delivery process | |
| Bentley et al. | The Rock Model | |
| Bashore et al. | The importance of the geological model for reservoir characterization using geostatistical techniques and the impact on subsequent fluid flow | |
| Masoud et al. | Reservoir characterization and geostatistical model of the Cretaceous and Cambrian-Ordovician reservoir intervals, Meghil field, Sirte basin, Libya | |
| Johnson | Applications of Geostatistical Seismic Inversion to the Vaca Muerta, Neuquen Basin, Argentina | |
| Newell | Implicit geological modelling: a new approach to 3D volumetric national-scale geological models | |
| Uland et al. | 3-D reservoir characterization for improved reservoir management | |
| Shanor et al. | An integrated reservoir characterization study of a giant middle east oil field: part 1—geological modelling | |
| Gawith et al. | Integrating geoscience and engineering for improved field management and appraisal | |
| Grover et al. | A Unified Modelling Approach using AI based Probabilistic Method to Address Structural Uncertainty in Carbonate Reservoirs |