[go: up one dir, main page]

Meher et al., 2010 - Google Patents

A high bit rate serial-serial multiplier with on-the-fly accumulation by asynchronous counters

Meher et al., 2010

View PDF
Document ID
5807600132113769120
Author
Meher M
Jong C
Chang C
Publication year
Publication venue
IEEE transactions on very large scale integration (VLSI) systems

External Links

Snippet

A novel approach of designing serial-serial hybrid multiplier is proposed for applications with high data sampling rate (≥ 4 GHz). The conventional way of partial product formation is revamped. Our proposed technique effectively forms the entire partial product matrix in just n …
Continue reading at www.academia.edu (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/53Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/533Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/5443Sum of products
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • G06F7/505Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination
    • G06F7/506Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination with simultaneous carry generation for, or propagation over, two or more stages
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5045Circuit design
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575
    • G06F2207/3804Details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/68Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using pulse rate multipliers or dividers pulse rate multipliers or dividers per se
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • G06F1/16Constructional details or arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2217/00Indexing scheme relating to computer aided design [CAD]
    • G06F2217/78Power analysis and optimization
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Similar Documents

Publication Publication Date Title
Van Toan et al. FPGA-based multi-level approximate multipliers for high-performance error-resilient applications
Kuang et al. Energy-efficient high-throughput Montgomery modular multipliers for RSA cryptosystems
Santoro et al. SPIM: a pipelined 64* 64-bit iterative multiplier
Kenney et al. A high-frequency decimal multiplier
Chang et al. Simple, Fast, and Exact RNS Scaler for the Three-Moduli Set $\{2^{n}-1, 2^{n}, 2^{n}+ 1\} $
Chow et al. A Karatsuba-based Montgomery multiplier
Lakshminarayanan et al. Optimization techniques for FPGA-based wave-pipelined DSP blocks
Meher et al. Low-Latency, Low-Area, and Scalable Systolic-Like Modular Multipliers for $ GF (2^{m}) $ Based on Irreducible All-One Polynomials
Namin et al. Low-power design for a digit-serial polynomial basis finite field multiplier using factoring technique
Meher et al. A high bit rate serial-serial multiplier with on-the-fly accumulation by asynchronous counters
Mukherjee et al. Counter based low power, low latency Wallace tree multiplier using GDI technique for on-chip digital filter applications
Antelo et al. Digit-recurrence dividers with reduced logical depth
Ratnaparkhi et al. Lead: Logarithmic exponent approximate divider for image quantization application
Somasekhar et al. A 230-MHz half-bit level pipelined multiplier using true single-phase clocking
Yagain et al. FIR filter design based on retiming automation using VLSI design metrics
Datla et al. Quaternary voltage-mode logic cells and fixed-point multiplication circuits
Ibrahim et al. Low-power, high-speed unified and scalable word-based radix 8 architecture for montgomery modular multiplication in GF (p) and GF (2 n)
Kavitha et al. An efficient 32-bit Ladner Fischer adder derived using Han-Carlson
Senthilpari et al. Proposed low power, high speed adder-based 65-nm Square root circuit
Sivanantham Design of low power floating point multiplier with reduced switching activity in deep submicron technology
James et al. Performance analysis of double digit decimal multiplier on various FPGA logic families
Khatibzadeh et al. A novel design of a 6-GHz 8/spl times/8-b pipelined multiplier
Kim et al. Digit-serial modular multiplication using skew-tolerant domino CMOS
Choi et al. Enhancement of a modified radix-2 Montgomery modular multiplication
Jalaja et al. Design of low power based VLSI architecture for constant multiplier and high speed implementation using retiming technique