[go: up one dir, main page]

Kostenko et al., 2021 - Google Patents

Random search algorithm with self-learning for neural network training

Kostenko et al., 2021

Document ID
5537751945608239907
Author
Kostenko V
Seleznev L
Publication year
Publication venue
Optical Memory and Neural Networks

External Links

Snippet

Random Search Algorithm with Self-Learning for Neural Network Training | Optical Memory and Neural Networks Skip to main content Springer Nature Link Account Menu Find a journal Publish with us Track your research Search Cart 1.Home 2.Optical Memory and Neural …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/0635Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means using analogue means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/04Architectures, e.g. interconnection topology
    • G06N3/0454Architectures, e.g. interconnection topology using a combination of multiple neural nets
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/067Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/02Computer systems based on specific mathematical models using fuzzy logic
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/005Probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6251Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on a criterion of topology preservation, e.g. multidimensional scaling, self-organising maps
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • G06K9/627Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches based on distances between the pattern to be recognised and training or reference patterns
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/18Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines

Similar Documents

Publication Publication Date Title
Di Mauro et al. Activity prediction of business process instances with inception CNN models
Kumaraswamy Neural networks for data classification
Panda et al. How effective is the salp swarm algorithm in data classification
Kostenko et al. Random search algorithm with self-learning for neural network training
Guo et al. Dynamic neural network structure: A review for its theories and applications
Cao et al. Fuzziness-based online sequential extreme learning machine for classification problems
Aizenberg et al. Batch linear least squares-based learning algorithm for MLMVN with soft margins
Egrioglu et al. Winsorized dendritic neuron model artificial neural network and a robust training algorithm with Tukey’s biweight loss function based on particle swarm optimization
Mleczko et al. Rough deep belief network-application to incomplete handwritten digits pattern classification
Xie et al. A distributed cooperative learning algorithm based on zero-gradient-sum strategy using radial basis function network
Yang et al. Extreme learning machine for interval neural networks
Subrahmanya et al. Constructive training of recurrent neural networks using hybrid optimization
Wani et al. Training supervised deep learning networks
Ammar et al. On the weighted pseudo-almost periodic solution for BAM networks with delays
Zhang et al. Weight uncertainty in Boltzmann machine
Marquez et al. Online machine learning based predictor for biological systems
Chen et al. An adaptive multi-sensor visual attention model
Kostenko Multi-start method with cutting for solving problems of unconditional optimization
Tan et al. Weighted neural tangent kernel: a generalized and improved network-induced kernel
Abdulrahman et al. Enhancing the analog to digital converter using proteretic hopfield neural network
Geidarov Experiment for creating a Neural Network with weights determined by the potential of a simulated electrostatic field
Williams SINN: shepard interpolation neural networks
Neukart et al. A Machine Learning Approach for Abstraction Based on the Idea of Deep Belief Artificial Neural Networks
Kasabov Evolving connectionist systems: From Neuro-fuzzy-, to spiking-and Neuro-genetic
Khosrowshahi Innovation in artificial neural network learning: Learn-On-Demand methodology