[go: up one dir, main page]

Zhang et al., 2013 - Google Patents

Optimization of dolomite usage in iron ore sintering process

Zhang et al., 2013

View PDF
Document ID
5315370353127684611
Author
Zhang G
Wu S
Chen S
Zhu J
Fan J
Su B
Publication year
Publication venue
ISIJ international

External Links

Snippet

To achieve the action mechanism and optimal usage of dolomite in the sintering process, solid reaction tests, fluidity tests, bonding strength tests and sinter pot tests were conducted, then microstructure and energy spectrum were analysed further. Reaction temperature of …
Continue reading at www.jstage.jst.go.jp (PDF) (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting; Granulating
    • C22B1/242Binding; Briquetting; Granulating with binders
    • C22B1/244Binding; Briquetting; Granulating with binders organic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting; Granulating
    • C22B1/2406Binding; Briquetting; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/12Natural pozzuolanes; Natural pozzuolana cements; Artificial pozzuolanes or artificial pozzuolana cements other than those obtained from waste or combustion residues, e.g. burned clay; Treating inorganic materials to improve their pozzuolanic characteristics
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/04Making slag of special composition
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/48Clinker treatment
    • C04B7/52Grinding; After-treatment of ground cement
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/54Processes yielding slags of special composition

Similar Documents

Publication Publication Date Title
Zhang et al. Optimization of dolomite usage in iron ore sintering process
Prusti et al. Effect of limestone and dolomite flux on the quality of pellets using high LOI iron ore
Jian et al. Utilization of nickel slag using selective reduction followed by magnetic separation
Zhou et al. Vanadium–titanium magnetite ore blend optimization for sinter strength based on iron ore basic sintering characteristics
Zhu et al. Influence of basicity and MgO content on metallurgical performances of Brazilian specularite pellets
Wu et al. Influencing factors and effects of assimilation characteristic of iron ores in sintering process
Liu et al. Effect of MgO content in sinter on the softening–melting behavior of mixed burden made from chromium-bearing vanadium–titanium magnetite
CA2972936C (en) Process for dephosphorization of molten metal during a refining process
Mi et al. Effect of basicity on sintering behavior of low-titanium vanadium–titanium magnetite
Wu et al. Sintering behavior of return fines and their effective utilization method
Ding et al. Innovative methodology for separating of rare earth and iron from Bayan Obo complex iron ore
Bölükbaşı et al. Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality
Cao et al. Making ferronickel from laterite nickel ore by coal-based self-reduction and high temperature melting process
de Morais Oliveira et al. Alternative to deal with high level of fine materials in iron ore sintering process
Lu et al. Sintering characteristics of iron ore blends containing high proportions of goethitic ores
Okazaki et al. Marra Mamba ore, its mineralogical properties and evaluation for utilization
Pal et al. Effect of pyroxenite and olivine minerals as source of MgO in hematite pellet on improvement of metallurgical properties
Kalenga et al. Investigation into how the magnesia, silica, and alumina contents of iron ore sinter influence its mineralogy and properties
Xu et al. Effect of dolomite on reduction swelling property of iron ore pellets
Agarwal et al. Development of chromite sinter from ultra-fine chromite ore by direct sintering
Higuchi et al. Influence of ore assimilation and pore formation during sintering on reduction behavior of sintered ores
RU2524878C2 (en) Steel high-magnesia flux and method of its production (versions)
Kumar et al. Improving the sinter productivity with increased specular iron ore in sinter blend
Feng et al. Sintering characteristics of fluxes and their structure optimization
Ju et al. Effect of high MgO/Al2O3 ratio (1.2 to 2.2) on sintering behavior and metallurgical properties