Wang et al., 2005 - Google Patents
Iterative padding subtraction of the PN sequence for the TDS-OFDM over broadcast channelsWang et al., 2005
- Document ID
- 5245347767447121513
- Author
- Wang J
- Yang Z
- Pan C
- Song J
- Yang L
- Publication year
- Publication venue
- IEEE Transactions on Consumer Electronics
External Links
Snippet
PN-sequence padding (PNP) TDS-OFDM transmission scheme has recently been proposed as an appealing alternative to the traditional cyclic prefix (CP) OFDM technology as it can provide significant improvement in the spectrum efficiency. In this paper, an iterative method …
- 238000004422 calculation algorithm 0 abstract description 8
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
- H04L25/0228—Channel estimation using sounding signals with direct estimation from sounding signals
- H04L25/023—Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
- H04L25/0232—Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/0335—Arrangements for removing intersymbol interference characterised by the type of transmission
- H04L2025/03375—Passband transmission
- H04L2025/03414—Multicarrier
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver
- H04L27/2655—Synchronisation arrangements
- H04L27/2657—Carrier synchronisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver
- H04L27/2655—Synchronisation arrangements
- H04L27/2668—Details of algorithms
- H04L27/2673—Details of algorithms characterised by synchronisation parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03012—Arrangements for removing intersymbol interference operating in the time domain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03433—Arrangements for removing intersymbol interference characterised by equaliser structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03592—Adaptation methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/2605—Symbol extensions
- H04L27/2607—Cyclic extensions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0212—Channel estimation of impulse response
- H04L25/0216—Channel estimation of impulse response with estimation of channel length
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2614—Peak power aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0204—Channel estimation of multiple channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03828—Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Wang et al. | Iterative padding subtraction of the PN sequence for the TDS-OFDM over broadcast channels | |
| Fu et al. | A simplified equalization method for dual PN-sequence padding TDS-OFDM systems | |
| Coleri et al. | Channel estimation techniques based on pilot arrangement in OFDM systems | |
| CN101364831B (en) | Method for channel estimation | |
| CN100521665C (en) | Iterative decomposition method for fixed training sequence stuffing modulation system | |
| Fu et al. | Low-complexity equalization for TDS-OFDM systems over doubly selective channels | |
| WO2008052732A1 (en) | Subblock-wise frequency domain equalizer | |
| Tang et al. | Iterative channel estimation for block transmission with known symbol padding-a new look at TDS-OFDM | |
| KR100656384B1 (en) | Channel Estimation Method and Apparatus Using Linear Prediction in Open FM Communication System with Virtual Subcarrier | |
| JP5254526B2 (en) | System, modem, receiver, transmitter and method for improving transmission performance | |
| Van Welden et al. | Iterative decision-directed joint frequency offset and channel estimation for KSP-OFDM | |
| Suyama et al. | A scattered pilot OFDM receiver with equalization for multipath environments with delay difference greater than guard interval | |
| Anbar et al. | Iterative SC-FDMA frequency domain equalization and phase noise mitigation | |
| Lin | Channel estimation assisted by postfixed pseudo-noise sequences padded with zero samples for mobile orthogonal-frequency-division-multiplexing communications | |
| Lin | Least-squares channel estimation assisted by self-interference cancellation for mobile pseudo-random-postfix orthogonal-frequency-division multiplexing applications | |
| Genc et al. | On the Comparative Performance Analysis of Turbo-Coded Non-Ideal Single-Carrier and Multi-Carrier Waveforms over Wideb and Vogler-Hoffmeyer HF Channels | |
| Yang et al. | Channel estimation for the Chinese DTTB system based on a novel iterative PN sequence reconstruction | |
| Lin | Channel estimation assisted by postfixed pseudo-noise sequences padded with null samples for mobile OFDM communications | |
| Aykırı et al. | A new FWHT‐CMF‐DFE based approach for channel equalization in CP‐free OFDM systems | |
| Pasi et al. | Review on OFDM a brief survey | |
| Chen et al. | Blind algorithm for RIBI mitigation in OFDM systems | |
| CN102065051B (en) | Designing method of pseudo-noise (PN) sequences and capturing method of signals before detection in time domain synchronous-orthogonal frequency division multiplexing (TDS-OFDM)-based system | |
| Bourdoux et al. | SPC04-5: Practical Channel Estimation for OFDM in time-varying channels | |
| Sun et al. | Alignment Signal Aided CP-Free SEFDM | |
| Favalli et al. | Estimation and mitigation of intercarrier interference for OFDM systems in multipath fading channels |