[go: up one dir, main page]

Tierno et al., 2008 - Google Patents

A wide power supply range, wide tuning range, all static CMOS all digital PLL in 65 nm SOI

Tierno et al., 2008

View PDF
Document ID
4909648201891325359
Author
Tierno J
Rylyakov A
Friedman D
Publication year
Publication venue
IEEE Journal of Solid-State Circuits

External Links

Snippet

An all static CMOS ADPLL fabricated in 65 nm digital CMOS SOI technology has a fully programmable proportional-integral-differential (PID) loop filter and features a third order delta sigma modulator. The DCO is a three stage, static inverter based ring oscillator …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0995Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator
    • H03L7/0998Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator using phase interpolation
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/087Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using at least two phase detectors or a frequency and phase detector in the loop
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating pulses not covered by one of the other main groups in this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00019Variable delay
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating pulses not covered by one of the other main groups in this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/131Digitally controlled
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L2207/00Indexing scheme relating to automatic control of frequency or phase and to synchronisation
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion

Similar Documents

Publication Publication Date Title
Tierno et al. A wide power supply range, wide tuning range, all static CMOS all digital PLL in 65 nm SOI
Lee et al. A 1 GHz ADPLL With a 1.25 ps Minimum-Resolution Sub-Exponent TDC in 0.18$\mu $ m CMOS
US9515668B2 (en) Automatically placed-and-routed ADPLL with PWM-based DCO resolution enhancement
Olsson et al. A digitally controlled PLL for SoC applications
US7046098B2 (en) All-digital frequency synthesis with capacitive re-introduction of dithered tuning information
US7483508B2 (en) All-digital frequency synthesis with non-linear differential term for handling frequency perturbations
US8000428B2 (en) All-digital frequency synthesis with DCO gain calculation
Song et al. A 1.0–4.0-Gb/s all-digital CDR with 1.0-ps period resolution DCO and adaptive proportional gain control
Kim et al. A 2.4-GHz 1.5-mW digital multiplying delay-locked loop using pulsewidth comparator and double injection technique
Kim et al. A 0.3–1.4 GHz all-digital fractional-N PLL with adaptive loop gain controller
Chen et al. A clock generator with cascaded dynamic frequency counting loops for wide multiplication range applications
CN110752846A (en) Delay control circuit of asynchronous successive approximation analog-digital converter
Yoo et al. A low-jitter and low-reference-spur ring-VCO-based injection-locked clock multiplier using a triple-point background calibrator
Seo et al. A 1-GHz Digital PLL With a 3-ps Resolution Floating-Point-Number TDC in a 0.18-$\mu\hbox {m} $ CMOS
Angeli et al. Low-power all-digital multiphase DLL design using a scalable phase-to-digital converter
Angeli et al. A low-power and area-efficient digitally controlled shunt-capacitor delay element for high-resolution delay lines
Staszewski et al. Time-to-digital converter for RF frequency synthesis in 90 nm CMOS
Jung et al. All-digital process-variation-calibrated timing generator for ATE with 1.95-ps resolution and maximum 1.2-GHz test rate
Park et al. A low-jitter 2.4 GHz all-digital MDLL with a dithering jitter reduction scheme for 256 times frequency multiplication
Hsieh et al. A phase-selecting digital phase-locked loop with bandwidth tracking in 65-nm CMOS technology
Kim et al. All-digital phased-locked loop with local passive interpolation time-to-digital converter based on a tristate inverter
CN210518272U (en) Delay control circuit of asynchronous successive approximation analog-digital converter
EP1351397A2 (en) All-digital frequency synthesis with capacitive re-introduction of dithered tuning information
Cho et al. A 12.24-GHz MDLL With a 102-Multiplication Factor Using a Power-Gating-Based Ring Oscillator
Kruth et al. Charge pump clock generation PLL for the data output block of the upgraded ATLAS pixel front-end in 130 nm CMOS