numpy.tile#
- numpy.tile(A, reps)[source]#
- Construct an array by repeating A the number of times given by reps. - If reps has length - d, the result will have dimension of- max(d, A.ndim).- If - A.ndim < d, A is promoted to be d-dimensional by prepending new axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication, or shape (1, 1, 3) for 3-D replication. If this is not the desired behavior, promote A to d-dimensions manually before calling this function.- If - A.ndim > d, reps is promoted to A.ndim by prepending 1’s to it. Thus for an A of shape (2, 3, 4, 5), a reps of (2, 2) is treated as (1, 1, 2, 2).- Note : Although tile may be used for broadcasting, it is strongly recommended to use numpy’s broadcasting operations and functions. - Parameters:
- Aarray_like
- The input array. 
- repsarray_like
- The number of repetitions of A along each axis. 
 
- Returns:
- cndarray
- The tiled output array. 
 
 - See also - repeat
- Repeat elements of an array. 
- broadcast_to
- Broadcast an array to a new shape 
 - Examples - >>> import numpy as np >>> a = np.array([0, 1, 2]) >>> np.tile(a, 2) array([0, 1, 2, 0, 1, 2]) >>> np.tile(a, (2, 2)) array([[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]]) >>> np.tile(a, (2, 1, 2)) array([[[0, 1, 2, 0, 1, 2]], [[0, 1, 2, 0, 1, 2]]]) - >>> b = np.array([[1, 2], [3, 4]]) >>> np.tile(b, 2) array([[1, 2, 1, 2], [3, 4, 3, 4]]) >>> np.tile(b, (2, 1)) array([[1, 2], [3, 4], [1, 2], [3, 4]]) - >>> c = np.array([1,2,3,4]) >>> np.tile(c,(4,1)) array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])