numpy.concatenate#
- numpy.concatenate((a1, a2, ...), axis=0, out=None, dtype=None, casting="same_kind")#
- Join a sequence of arrays along an existing axis. - Parameters:
- a1, a2, …sequence of array_like
- The arrays must have the same shape, except in the dimension corresponding to axis (the first, by default). 
- axisint, optional
- The axis along which the arrays will be joined. If axis is None, arrays are flattened before use. Default is 0. 
- outndarray, optional
- If provided, the destination to place the result. The shape must be correct, matching that of what concatenate would have returned if no out argument were specified. 
- dtypestr or dtype
- If provided, the destination array will have this dtype. Cannot be provided together with out. - New in version 1.20.0. 
- casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional
- Controls what kind of data casting may occur. Defaults to ‘same_kind’. For a description of the options, please see casting. - New in version 1.20.0. 
 
- Returns:
- resndarray
- The concatenated array. 
 
 - See also - ma.concatenate
- Concatenate function that preserves input masks. 
- array_split
- Split an array into multiple sub-arrays of equal or near-equal size. 
- split
- Split array into a list of multiple sub-arrays of equal size. 
- hsplit
- Split array into multiple sub-arrays horizontally (column wise). 
- vsplit
- Split array into multiple sub-arrays vertically (row wise). 
- dsplit
- Split array into multiple sub-arrays along the 3rd axis (depth). 
- stack
- Stack a sequence of arrays along a new axis. 
- block
- Assemble arrays from blocks. 
- hstack
- Stack arrays in sequence horizontally (column wise). 
- vstack
- Stack arrays in sequence vertically (row wise). 
- dstack
- Stack arrays in sequence depth wise (along third dimension). 
- column_stack
- Stack 1-D arrays as columns into a 2-D array. 
 - Notes - When one or more of the arrays to be concatenated is a MaskedArray, this function will return a MaskedArray object instead of an ndarray, but the input masks are not preserved. In cases where a MaskedArray is expected as input, use the ma.concatenate function from the masked array module instead. - Examples - >>> import numpy as np >>> a = np.array([[1, 2], [3, 4]]) >>> b = np.array([[5, 6]]) >>> np.concatenate((a, b), axis=0) array([[1, 2], [3, 4], [5, 6]]) >>> np.concatenate((a, b.T), axis=1) array([[1, 2, 5], [3, 4, 6]]) >>> np.concatenate((a, b), axis=None) array([1, 2, 3, 4, 5, 6]) - This function will not preserve masking of MaskedArray inputs. - >>> a = np.ma.arange(3) >>> a[1] = np.ma.masked >>> b = np.arange(2, 5) >>> a masked_array(data=[0, --, 2], mask=[False, True, False], fill_value=999999) >>> b array([2, 3, 4]) >>> np.concatenate([a, b]) masked_array(data=[0, 1, 2, 2, 3, 4], mask=False, fill_value=999999) >>> np.ma.concatenate([a, b]) masked_array(data=[0, --, 2, 2, 3, 4], mask=[False, True, False, False, False, False], fill_value=999999)