numpy.fromfunction#
- numpy.fromfunction(function, shape, *, dtype=<class 'float'>, like=None, **kwargs)[source]#
- Construct an array by executing a function over each coordinate. - The resulting array therefore has a value - fn(x, y, z)at coordinate- (x, y, z).- Parameters:
- functioncallable
- The function is called with N parameters, where N is the rank of - shape. Each parameter represents the coordinates of the array varying along a specific axis. For example, if- shapewere- (2, 2), then the parameters would be- array([[0, 0], [1, 1]])and- array([[0, 1], [0, 1]])
- shape(N,) tuple of ints
- Shape of the output array, which also determines the shape of the coordinate arrays passed to function. 
- dtypedata-type, optional
- Data-type of the coordinate arrays passed to function. By default, - dtypeis float.
- likearray_like, optional
- Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as - likesupports the- __array_function__protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.- New in version 1.20.0. 
 
- Returns:
- fromfunctionany
- The result of the call to function is passed back directly. Therefore the shape of - fromfunctionis completely determined by function. If function returns a scalar value, the shape of- fromfunctionwould not match the- shapeparameter.
 
 - Notes - Keywords other than - dtypeand like are passed to function.- Examples - >>> import numpy as np >>> np.fromfunction(lambda i, j: i, (2, 2), dtype=float) array([[0., 0.], [1., 1.]]) - >>> np.fromfunction(lambda i, j: j, (2, 2), dtype=float) array([[0., 1.], [0., 1.]]) - >>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int) array([[ True, False, False], [False, True, False], [False, False, True]]) - >>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int) array([[0, 1, 2], [1, 2, 3], [2, 3, 4]])