numpy.array#
- numpy.array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0, like=None)#
- Create an array. - Parameters:
- objectarray_like
- An array, any object exposing the array interface, an object whose - __array__method returns an array, or any (nested) sequence. If object is a scalar, a 0-dimensional array containing object is returned.
- dtypedata-type, optional
- The desired data-type for the array. If not given, NumPy will try to use a default - dtypethat can represent the values (by applying promotion rules when necessary.)
- copybool, optional
- If - True(default), then the array data is copied. If- None, a copy will only be made if- __array__returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of the other requirements (- dtype,- order, etc.). Note that any copy of the data is shallow, i.e., for arrays with object dtype, the new array will point to the same objects. See Examples for- ndarray.copy. For- Falseit raises a- ValueErrorif a copy cannot be avoided. Default:- True.
- order{‘K’, ‘A’, ‘C’, ‘F’}, optional
- Specify the memory layout of the array. If object is not an array, the newly created array will be in C order (row major) unless ‘F’ is specified, in which case it will be in Fortran order (column major). If object is an array the following holds. - order - no copy - copy=True - ‘K’ - unchanged - F & C order preserved, otherwise most similar order - ‘A’ - unchanged - F order if input is F and not C, otherwise C order - ‘C’ - C order - C order - ‘F’ - F order - F order - When - copy=Noneand a copy is made for other reasons, the result is the same as if- copy=True, with some exceptions for ‘A’, see the Notes section. The default order is ‘K’.
- subokbool, optional
- If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array (default). 
- ndminint, optional
- Specifies the minimum number of dimensions that the resulting array should have. Ones will be prepended to the shape as needed to meet this requirement. 
- likearray_like, optional
- Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as - likesupports the- __array_function__protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.- New in version 1.20.0. 
 
- Returns:
- outndarray
- An array object satisfying the specified requirements. 
 
 - See also - empty_like
- Return an empty array with shape and type of input. 
- ones_like
- Return an array of ones with shape and type of input. 
- zeros_like
- Return an array of zeros with shape and type of input. 
- full_like
- Return a new array with shape of input filled with value. 
- empty
- Return a new uninitialized array. 
- ones
- Return a new array setting values to one. 
- zeros
- Return a new array setting values to zero. 
- full
- Return a new array of given shape filled with value. 
- copy
- Return an array copy of the given object. 
 - Notes - When order is ‘A’ and - objectis an array in neither ‘C’ nor ‘F’ order, and a copy is forced by a change in dtype, then the order of the result is not necessarily ‘C’ as expected. This is likely a bug.- Examples - >>> import numpy as np >>> np.array([1, 2, 3]) array([1, 2, 3]) - Upcasting: - >>> np.array([1, 2, 3.0]) array([ 1., 2., 3.]) - More than one dimension: - >>> np.array([[1, 2], [3, 4]]) array([[1, 2], [3, 4]]) - Minimum dimensions 2: - >>> np.array([1, 2, 3], ndmin=2) array([[1, 2, 3]]) - Type provided: - >>> np.array([1, 2, 3], dtype=complex) array([ 1.+0.j, 2.+0.j, 3.+0.j]) - Data-type consisting of more than one element: - >>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')]) >>> x['a'] array([1, 3], dtype=int32) - Creating an array from sub-classes: - >>> np.array(np.asmatrix('1 2; 3 4')) array([[1, 2], [3, 4]]) - >>> np.array(np.asmatrix('1 2; 3 4'), subok=True) matrix([[1, 2], [3, 4]])