Projects with this topic
-
The main project for OctoMY™ - Ready-to-run robot software
Updated -
FOMC rate decision predictor using ML bronze->silver->gold methods
Updated -
Slimme huishoudboekje-app met AI-gestuurde categorisering. Importeer je ING/Revolut transacties, krijg automatisch inzicht in je uitgaven en beheer je budget met NIBUD-referenties. Privacy-first: alle ML draait lokaal.
Volledige ge amp/vibe coded met Claude Code!
Updated -
Fundamental theory and practice in Data Science (DS).
🧮 data analysis AI ML DL machine lear... deep learning data science data-enginee... artificial i... data-science data preproc... Python C C++ NumPy pandas mathematics Algorithm algorithms Data Enginee... big data scipy scikit-learn xgboost lightgbm catboost TensorFlow keras PyTorch matplotlib seaborn plotly nltk opencv dask linear-algebra calculus probability statistics Discrete Mat... RUpdated -
🛒 AI chat & product/category summaries in Amazon shopping, powered by the latest LLMsUpdated -
Practical tasks on Deep Learning (DL) and Neural Networks (NN).
🤖 Python machine lear... deep learning NumPy matplotlib pandas AI mathematics computer vision natural lang... speech proce... PyTorch scikit-learn artificial i... ML DL big data data analysis scipy keras TensorFlow seaborn plotly nltk opencv dask Deep Nerual ... programming openml google colab google colla... google drive computer sci... CSV API python3 jupyter jupyter note... Anaconda Bash shell LaTeX MarkdownUpdated -
A production-oriented Machine Learning pipeline that predicts whether an active user session will result in a purchase.
Model: XGBoost Classifier optimized for class imbalance.
Performance: ROC AUC 0.936 | F1-score 0.71 (at 0.30 threshold).
Key Features: Reproducible environment (uv), modular CLI for training/inference, leakage-free preprocessing, and SHAP interpretability analysis.
Data: UCI Online Shoppers Purchasing Intention Dataset.
Tech Stack: Python, XGBoost, Scikit-learn, Pandas, SHAP.
UpdatedUpdated -
A lightweight, AI-powered Applicant Tracking System (ATS) that parses PDF resumes using local LLM inference. Built for personal/small team use with a modern, minimal interface.
Updated -
Meetup PyMX Septiembre 2023 Usando Servicios Administrados de AI de AWS con Python y Boto3
Updated -
A conversational AI chatbot built using Next.js and Node.js with text + voice chat, GitLab CI/CD, SAST security, issues, labels, milestones, and merge request workflow.
Updated -
A set of data science and machine learning projects exploring various datasets — a place to test ideas, models, and analytical approaches.
UpdatedUpdated -
-
A comprehensive Python toolkit for analyzing protein structures and small molecules using real datasets from RCSB PDB and FDA-approved drugs.
Updated -
A libre smart powered comic book reader for Android.
❗ Note: This is a mirror. Check GitHub repository.UpdatedUpdated -
A comprehensive machine learning pipeline for classifying astronomy images into 6 categories of celestial objects, featuring advanced data preprocessing, exploratory data analysis, and deep learning classification models.
https://huggingface.co/spaces/Saqib772/Astronomy_image_classfication
Kaggle Notebook: https://www.kaggle.com/code/saqibiqbal2/astronomy-image-classification
Updated -
A Computer Vision algorithm for Malaria parasite detection and classification in digital images of thick blood smears.
Updated -
Here’s the source code for my exploratory data analysis and model training for a movie recommendation system. The main model deployment code is in this repository.
Deployment Repo: (https://gitlab.com/aydie/ml-model-netflix-recommendation-system)
Website: aydie.in Contact: business@aydie.in
Updated -
House Prices Competition on Kaggle
Updated -
Een MLFlow wrapper die het makkelijk maakt om samen in dezelfde MLFlow omgeving te werken met bijvoorbeeld Teams. Maakt het daarnaast makkelijker om met standaard machine learning packages (nu alleen nog scikit-learn) modellen en scores te loggen.
Updated -
A comprehensive exploration of various machine learning algorithms, including supervised, unsupervised, and reinforcement learning methods. This project will implement, analyze, and optimize algorithms like decision trees, random forests, SVMs, and neural networks, providing hands-on experience in selecting and applying them for different use cases.
Updated