[go: up one dir, main page]

Skip to content

Implementation of MlpMixer model, Original paper: MLP-Mixer: An all-MLP Architecture for Vision

Notifications You must be signed in to change notification settings

920232796/MlpMixer-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MlpMixer - Pytorch

I implemented MlpMixer using pytorch.

Original paper: MLP-Mixer: An all-MLP Architecture for Vision

Usage MlpMixer

import torch
from MlpMixer.model import  MlpMixer

if __name__ == "__main__":
    model = MlpMixer(in_dim=1, hidden_dim=32,
                     mlp_token_dim=32, mlp_channel_dim=32,
                     patch_size=(7, 7), img_size=(28, 28),
                     num_block=2, num_class=10
                )
    t1 = torch.rand(1, 1, 28, 28)
    print("input: " + str(t1.shape))
    
    # print(net)
    print("output: " + str(model(t1).shape))

If the output size is (1, 10), the code runs successfully.

current examples

  1. task_mnist: The simplest example, using the MlpMixer model to classify the minst dataset.

more

More examples will be updated later.

About

Implementation of MlpMixer model, Original paper: MLP-Mixer: An all-MLP Architecture for Vision

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages