[go: up one dir, main page]

Skip to content

PyTorch-Based Evaluation Tool for Co-Saliency Detection

Notifications You must be signed in to change notification settings

zzhanghub/eval-co-sod

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


Logo

PyTorch-Based Evaluation Tool for Co-Saliency Detection

Automatically evaluate 8 metrics and draw 4 types of curves
⭐ Project Home »


Eval Co-SOD is an extended version of Evaluate-SOD for co-saliency detection task. It provides eight metrics and four curves:

  • Metrics:
    • Mean Absolute Error (MAE)
    • Maximum F-measure (max-Fm)
    • Mean F-measure (mean-Fm)
    • Maximum E-measure (max-Em)
    • Mean E-measure (mean-Em)
    • S-measure (Sm)
    • Average Precision (AP)
    • Area Under Curve (AUC)
  • Curves:
    • Precision-Recall (PR) curve
    • Receiver Operating Characteristic (ROC) curve
    • F-measure curve
    • E-measure curve

Prerequisites

  • PyTorch >= 1.0

Usage

1. Prepare your data

The structure of root_dir should be organized as follows:

.
├── gt
│   ├── dataset1
│   │   ├── accordion
│   │   │   ├── 51499.png
│   │   │   └── 186605.png
│   │   └── alarm clock
│   │       ├── 51499.png
│   │       └── 186605.png
│   ├── dataset2 ...
│   └── dataset3 ...
│ 
└── pred
    └── method1
    │   ├── dataset1
    │   │   ├── accordion
    │   │   │   ├── 51499.png
    │   │   │   └── 186605.png
    │   │   └── alarm clock
    │   │       ├── 51499.png
    │   │       └── 186605.png
    │   ├── dataset2 ..
    │   └── dataset3 ...
    └──method2 ...

2. Evaluate on the 8 metrices

  1. Configure eval.sh
--methods method1+method2+method3 (Multiple items are connected with '+')
--datasets dataset1+dataset2+dataset3
--save_dir ./Result (Path to save results)
--root_dir ../SalMaps
  1. Run by
sh eval.sh

3. Draw the 4 types of curves

  1. Configure plot_curve.sh
--methods method1+method2+method3 (Multiple items are connected with '+')
--datasets dataset1+dataset2+dataset3
--out_dir ./Result/Curves (Path to save results)
--res_dir ./Result/Detail
  1. Run by
sh plot_curve.sh

Citation

If you find this tool is useful for your research, please cite the following papers.

@inproceedings{zhang2020gicd,
 title={Gradient-Induced Co-Saliency Detection},
 author={Zhang, Zhao and Jin, Wenda and Xu, Jun and Cheng, Ming-Ming},
 booktitle={European Conference on Computer Vision (ECCV)},
 year={2020}
}

@inproceedings{fan2020taking,
  title={Taking a Deeper Look at the Co-salient Object Detection}, 
  author={Fan, Deng-Ping and Lin, Zheng and Ji, Ge-Peng and Zhang, Dingwen and Fu, Huazhu and Cheng, Ming-Ming},   
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020} 
} 

Contact

If you have any questions, feel free to contact me via zzhang🥳mail😲nankai😲edu😲cn